Укажите множество представляющее собой множество общую часть множество х<3 и -5<х<3,2 Укажите множество состоящие из элементов , принадлежащих хотя бы одному из множеств х>-2 и -7<х<7 Какое из чисел неудовлетворяет неравенству -2<х<8
Необходимо начертить единичную окружность и заставить точку "бегать" по окружности: 3П - это 1,5 круга, соответствует углу 180 градусам. Точка будет иметь координаты (-1,0). По определению sin и cos это и есть их значения: sin3П=0, cos3П=-1. Аналогично: sin 4п=0, сos4П =1 sin3,5п=1, сos3,5П=0; sin5/2П=1, cos 5/2П=0 sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число (2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д. Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..
Наш план действий: 1) ищем производную 2) приравниваем её к нулю, решаем уравнение ( ищем критические точки) 3) Смотрим: какие из них попали в указанный промежуток. 4) Ищем значения данной функции в этих точках и на концах данного промежутка. 5) пишем ответ Начали? 1) у'= 3x² -18x +24 2) 3x² - 18x + 24 -0 x² - 6x +8 = 0 По т. Виета х = 2 и 4 3) в наш промежуток попало число 2 4) х = 2 у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19 х = -1 у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35 х = 3 у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17 5) max y = 19 [-1; 3]
Аналогично: sin 4п=0, сos4П =1
sin3,5п=1, сos3,5П=0;
sin5/2П=1, cos 5/2П=0
sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число
(2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д.
Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..
1) ищем производную
2) приравниваем её к нулю, решаем уравнение ( ищем критические точки)
3) Смотрим: какие из них попали в указанный промежуток.
4) Ищем значения данной функции в этих точках и на концах данного промежутка.
5) пишем ответ
Начали?
1) у'= 3x² -18x +24
2) 3x² - 18x + 24 -0
x² - 6x +8 = 0
По т. Виета х = 2 и 4
3) в наш промежуток попало число 2
4) х = 2
у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19
х = -1
у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35
х = 3
у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17
5) max y = 19
[-1; 3]