В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
St1ler
St1ler
26.02.2023 17:50 •  Алгебра

Упрости многочлен и найди его числовое значение: −+24+6,7,
если =3,=1,8.
Числовое значение многочлена равно

Показать ответ
Ответ:
Насонка
Насонка
28.11.2021 12:46
На заводе производится сплав, в котором на 2 кг алюминия приходится 1 кг никеля.      2 + 1 = 3 кг сплава.

Первая шахта: 60 рабочих; 5 рабочих часов в день;
           2 кг алюминия или 3 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день:  60*5 = 300 часов.
1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля.
Для 3 кг сплава требуется
1/3 часа на добычу 1 кг никеля и
1 час на добычу  2 кг алюминия.
1 час + 1/3 часа =  1 \frac{1}{3} = \frac{4}{3}  часа.

Пропорция
\frac{4}{3}  часа      -     3 кг сплава
300 часов   -     Х кг сплава
X = 300*3: \frac{4}{3} =900* \frac{3}{4} =675 кг сплава
------------------------------------------
Вторая шахта: 260 рабочих, 5 рабочих часов в день,
              3 кг алюминия или 2 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день:  260*5 = 1300 часов.
1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля.
1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия.
Для 3 кг сплава требуется 
1/2 часа для добычи  1 кг никеля и
1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия.
1/2 часа + 2/3 часа =  \frac{3+4}{6} = \frac{7}{6}  часа.

Пропорция
\frac{7}{6}  часа      -     3 кг сплава
1300 часов    -     Х кг сплава
X = 1300*3: \frac{7}{6} =3900* \frac{6}{7} =3342 \frac{6}{7}  кг сплава

Обе шахты могут обеспечить завод металлом для получения
675 + 3342 \frac{6}{7}=4017 \frac{6}{7} кг сплава

ответ: 4017 \frac{6}{7}  кг сплава.
0,0(0 оценок)
Ответ:
Pomawkal
Pomawkal
14.02.2022 15:38
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).

Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:

S = vt ;

Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:

\overline{r} = \overline{v}t ;

Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:

v = v_o + at , либо в векторном виде: \overline{v} = \overline{v_o} + \overline{a} t ;

Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:

S = v_o t + \frac{at^2}{2} либо в векторном виде: \overline{r} = \overline{v_o} t + \frac{ \overline{a} t^2}{2} ;

Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:

a = \frac{F_\Sigma}{m} либо в векторном виде: \overline{a} = \frac{ \overline{F}_\Sigma }{m} ;

Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:

\Delta \varphi = \omega t ;

Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:

\Delta x = A \cos{ ( \omega t + \varphi_o ) } ;

Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:

v = - A \omega \cos{ ( \omega t + \varphi_o ) } ;

Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:

a = - A \omega^2 \cos{ ( \omega t + \varphi_o ) } ;

Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:

Q^o = C \Delta t , где C = cm , либо в удельном виде: Q^o = c m \Delta t ;

Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:

Q^o = \lambda m ;

Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:

Q^o = L m ;

Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:

Q^o = q m ;

Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:

PV = \frac{m}{ \mu } RT ;

Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:

I = \frac{ \Delta q }{ \Delta t } ;

Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:

m F_\Phi z = I \Delta t , где F_\Phi = N_A e ;

Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:

I = \frac{U}{R} ;

Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:

Q^o = UQ = UI \Delta t = I^2 R \Delta t = \frac{ U^2 }{R} \Delta t ,

либо в мощностном виде: P = UI = I^2 R = \frac{ U^2 }{R} ;

Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:

F_A = B I \Delta L \sin{ \varphi } ;

Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:

F_\Lambda = B v q \sin{ \varphi } ;

Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:

U_{ind} = -\Phi'_t .
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота