Пусть в частном получается многочлен x²+bx+c. Тогда можно составить равенство: x³+ax+1=(x-a)(x²+bx+c)+3. Раскрываем скобки слева и перегруппировываем x³+ax+1=x³-ax²+bx²-abx+cx-ac+3.
x³+ax+1=x³+(b-a)x²+(c-ab)x+3-ac Два многочлена равны, если их степени равны и коэффициенты при одинаковых степенях равны b-a=0 ⇒a=b c-ab=a c-a²=a ⇒ c=a²+a 3-ac=1 3-a·(a²+a)=1 3-a³-a²-1=0 a³+a²-2=0 a³-1+a²-1=0 (a-1)(a²+a+1)+(a-1)(a+1)=0 (a-1)(a²+a+1+a+1)=0 (a-1)(a²+2a+2)=0 так как а²+2а+2=(а+1)²+1>0 при любом а, то а-1=0 а=1 О т в е т. а=1.
Задача 1
Пусть x км/ч - собственная скорость лодки
Тогда (x + 2) км/ч - скорость лодки по течению
(x - 2) км/ч - скорость лодки против течения
Составим уравнение:
(x + 2) * 7 + (x - 2) * 3 = 138
7x + 14 + 3x - 6 = 138
10x + 8 = 138
10x = 138 - 8
10x = 130
x = 130 : 10
x = 13 (км/ч)
ответ: 13 км/ч - собственная скорость лодки.
Задача 2
Пусть x деталей изготовил первый цех
Тогда 1,5x деталей - второй цех
(1,5x - 65) деталей - третий цех
Всего деталей - 655 шт.
Составим уравнение:
x + 1,5x + (1,5x - 65) = 655
x + 1,5x + 1,5x - 65 = 655
4x - 65 = 655
4x = 655 + 65
4x = 720
x = 720 : 4
x = 180 (дет.) первый цех
1,5x = 1,5 * 180 = 270 (дет.) второй цех
(1,5x - 65) = 270 - 65 = 205 (дет.) третий цех
ответ: 180 деталей - первый цех, 270 деталей - второй цех, 205 деталей - третий цех.
Тогда можно составить равенство:
x³+ax+1=(x-a)(x²+bx+c)+3.
Раскрываем скобки слева и перегруппировываем
x³+ax+1=x³-ax²+bx²-abx+cx-ac+3.
x³+ax+1=x³+(b-a)x²+(c-ab)x+3-ac
Два многочлена равны, если их степени равны и коэффициенты при одинаковых степенях равны
b-a=0 ⇒a=b
c-ab=a c-a²=a ⇒ c=a²+a
3-ac=1 3-a·(a²+a)=1
3-a³-a²-1=0
a³+a²-2=0
a³-1+a²-1=0
(a-1)(a²+a+1)+(a-1)(a+1)=0
(a-1)(a²+a+1+a+1)=0
(a-1)(a²+2a+2)=0 так как а²+2а+2=(а+1)²+1>0 при любом а, то
а-1=0
а=1
О т в е т. а=1.