1. При каких значениях а уравнение sin ^2 x - (a+3) sin x + 3a = 0 не имеет решений ?
2. Решите уравнение cos ^2 x + cos 4x = a , если одно из его решений п/3
Участник Знаний
1. Квадратное уравнение не имеет решений, если его дискриминант отрицателен.
\sin^2x-(a+3)\sin x+3a=0\\\sin x=t,\;\sin^2x=t^2,\;-1\leq t\leq1\\t^2-(a+3)t+3a=0\\D=(-(a+3))^2-4\cdot1\cdot3a=(a+3)^2-12a=a^2-6a+9=(a-3)^2\\(a-3)^2
Последнее неравенство не имеет решений. Значит, исходное уравнение имеет решение (-ия) при любых а.
2.\;\cos^2x+\cos4x=a\\\cos4x=8\cos^4x-8\cos^2x+1\\\cos^2x+8\cos^4x-8\cos^2x+1=a\\8\cos^4x-7\cos^2x+(1-a)=0\\\cos^2x=t,\cos^4x=t^2,\;0\leq t\leq1\\8t^2-7t+(1-a)=0\\D=49-4\cdot8\cdot(1-a)=49-32+32a=17+32a\\t_{1,2}=\frac{7\pm\sqrt{17+32a}}{16}
Один из корней п/3, значит x=\frac\pi3\Rightarrow\cos x=\frac12\Rightarrow\cos^2x=t=\frac14
\frac{7\pm\sqrt{17+32a}}{16}=\frac14\Rightarrow\begin{cases}\frac{7+\sqrt{17+32a}}{16}=\frac14\\\frac{7-\sqrt{17+32a}}{16}=\frac14\end{cases}\Rightarrow\begin{cases}{7+\sqrt{17+32a}}=4\\{7-\sqrt{17+32a}}=4\end{cases}\Rightarrow\\
\Rightarrow\begin{cases}\sqrt{17+32a}=-3\\\sqrt{17+32a}=3\end{cases}\Rightarrow 17+32a=9\Rightarrow32a=-8\Rightarrow a=-\frac14=-0,25\\t_1=\frac{7+\sqrt{17-32\cdot0,25}}{16}=\frac{7+\sqrt{9}}{16}=\frac{10}{16}=\frac58\\t_2=\frac{7-\sqrt{17-32\cdot0,25}}{16}=\frac{7-\sqrt{9}}{16}=\frac{4}{16}=\frac14\\\cos^2x=\frac14\Rightarrow\cos x=\frac12\Rightarrow x=\frac\pi3+2\pi n,\;n\in\mathbb{Z}\\\cos^2x=\frac58\Rightarrow\cos x=\sqrt{\frac58}\Rightarrow x=\arccos\left(\sqrt{\frac58}\right)+2\pi n,\;n\in\mathbb{Z}
Объяснение:
В решении.
2. [6 б] Функция задана уравнением у = х² - 6х + 5
1) определите направление ветвей параболы;
График - парабола со смещённым центром, ветви направлены вверх.
2) вычислите координаты вершины параболы;
х₀ = -b/2а = 6/2 = 3;
х₀ = 3;
у₀ = 3² - 6*3 + 5 = 9 - 18 + 5 = -4.
у₀ = -4;
Координаты вершины параболы (3; -4) ;
3) запишите ось симметрии параболы;
Ось симметрии Х = -b/2а = 6/2 = 3 ;
Х = 3;
4) в каких точках график данной функции пересекает ось Ох;
(нули функции).
Любой график пересекает ось Ох при у равном нулю:
х² - 6х + 5 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 36 - 20 = 16 √D= 4
х₁=(-b-√D)/2a
х₁=(6-4)/2
х₁=2/2
х₁=1;
х₂=(-b+√D)/2a
х₂=(6+4)/2
х₂=10/2
х₂=5.
Координаты нулей функции (1; 0); (5; 0).
5) в каких точках график данной функции пересекает ось Оу?
Любой график пересекает ось Оу при х равном нулю:
у = х² - 6х + 5 ; х = 0;
у = 0 - 0 + 5
у = 5.
Координаты точки пересечения графиком оси Оу (0; 5).
6) найдите дополнительные 2 точки графика;
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -1 0 1 2 3 4 5 6 7
у 12 5 0 -3 -4 -3 0 5 12
7) постройте график функции y = x² - 6x + 5.
1. При каких значениях а уравнение sin ^2 x - (a+3) sin x + 3a = 0 не имеет решений ?
2. Решите уравнение cos ^2 x + cos 4x = a , если одно из его решений п/3
Участник Знаний
1. Квадратное уравнение не имеет решений, если его дискриминант отрицателен.
\sin^2x-(a+3)\sin x+3a=0\\\sin x=t,\;\sin^2x=t^2,\;-1\leq t\leq1\\t^2-(a+3)t+3a=0\\D=(-(a+3))^2-4\cdot1\cdot3a=(a+3)^2-12a=a^2-6a+9=(a-3)^2\\(a-3)^2
Последнее неравенство не имеет решений. Значит, исходное уравнение имеет решение (-ия) при любых а.
2.\;\cos^2x+\cos4x=a\\\cos4x=8\cos^4x-8\cos^2x+1\\\cos^2x+8\cos^4x-8\cos^2x+1=a\\8\cos^4x-7\cos^2x+(1-a)=0\\\cos^2x=t,\cos^4x=t^2,\;0\leq t\leq1\\8t^2-7t+(1-a)=0\\D=49-4\cdot8\cdot(1-a)=49-32+32a=17+32a\\t_{1,2}=\frac{7\pm\sqrt{17+32a}}{16}
Один из корней п/3, значит x=\frac\pi3\Rightarrow\cos x=\frac12\Rightarrow\cos^2x=t=\frac14
\frac{7\pm\sqrt{17+32a}}{16}=\frac14\Rightarrow\begin{cases}\frac{7+\sqrt{17+32a}}{16}=\frac14\\\frac{7-\sqrt{17+32a}}{16}=\frac14\end{cases}\Rightarrow\begin{cases}{7+\sqrt{17+32a}}=4\\{7-\sqrt{17+32a}}=4\end{cases}\Rightarrow\\
\Rightarrow\begin{cases}\sqrt{17+32a}=-3\\\sqrt{17+32a}=3\end{cases}\Rightarrow 17+32a=9\Rightarrow32a=-8\Rightarrow a=-\frac14=-0,25\\t_1=\frac{7+\sqrt{17-32\cdot0,25}}{16}=\frac{7+\sqrt{9}}{16}=\frac{10}{16}=\frac58\\t_2=\frac{7-\sqrt{17-32\cdot0,25}}{16}=\frac{7-\sqrt{9}}{16}=\frac{4}{16}=\frac14\\\cos^2x=\frac14\Rightarrow\cos x=\frac12\Rightarrow x=\frac\pi3+2\pi n,\;n\in\mathbb{Z}\\\cos^2x=\frac58\Rightarrow\cos x=\sqrt{\frac58}\Rightarrow x=\arccos\left(\sqrt{\frac58}\right)+2\pi n,\;n\in\mathbb{Z}
Объяснение:
В решении.
Объяснение:
2. [6 б] Функция задана уравнением у = х² - 6х + 5
1) определите направление ветвей параболы;
График - парабола со смещённым центром, ветви направлены вверх.
2) вычислите координаты вершины параболы;
х₀ = -b/2а = 6/2 = 3;
х₀ = 3;
у₀ = 3² - 6*3 + 5 = 9 - 18 + 5 = -4.
у₀ = -4;
Координаты вершины параболы (3; -4) ;
3) запишите ось симметрии параболы;
Ось симметрии Х = -b/2а = 6/2 = 3 ;
Х = 3;
4) в каких точках график данной функции пересекает ось Ох;
(нули функции).
Любой график пересекает ось Ох при у равном нулю:
х² - 6х + 5 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 36 - 20 = 16 √D= 4
х₁=(-b-√D)/2a
х₁=(6-4)/2
х₁=2/2
х₁=1;
х₂=(-b+√D)/2a
х₂=(6+4)/2
х₂=10/2
х₂=5.
Координаты нулей функции (1; 0); (5; 0).
5) в каких точках график данной функции пересекает ось Оу?
Любой график пересекает ось Оу при х равном нулю:
у = х² - 6х + 5 ; х = 0;
у = 0 - 0 + 5
у = 5.
Координаты точки пересечения графиком оси Оу (0; 5).
6) найдите дополнительные 2 точки графика;
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -1 0 1 2 3 4 5 6 7
у 12 5 0 -3 -4 -3 0 5 12
7) постройте график функции y = x² - 6x + 5.