Задание 2. Две семьи отправились на детский утренник. Первая семья купила два детских билета и один взрослый и всего заплатила 390 рублей. Вторая семья купила три детских билета и два взрослых и всего заплатила 685 рублей. Сколько стоит один детский билет и сколько стоит один взрослый билет?
Решение.
Пусть х руб. - стоит один детский билет.
По условию 2 детских билета и один взрослый стоят 390 рублей, значит,
(390-2х) руб. - стоит один взрослый билет.
Ещё в условии сказано, что 3 детских билета и 2 взрослых стоят всего 685 рублей.
Так как тортики имеют постоянную высоту, то вместо рассмотрения объемов буем рассматривать соответствующие площади оснований.
Площадь основания тортика радиуса R:
Тогда, площадь основания одного Машиного куска:
Рассмотрим Дашин кусок (на картинке). Вертикальной и горизонтальной прямой разобьем его на 4 равные части и рассмотрим одну из них. Проведем еще одну прямую так, чтобы эта часть разделилась на сектор и прямоугольные треугольник.
Рассмотрим полученный сектор. Пусть α - угол между радиусами, образующими сектор. Тогда, площадь сектора:
Рассмотрим прямоугольный треугольник. Зная, что накрест лежащие углы при параллельных прямых равны, получим, что один из острых углов этого треугольника равен α. Выразим через этот угол и известный радиус катеты треугольника:
Площадь прямоугольного треугольника:
Тогда, запишем сумму, представляющую площадь основания четверти кусочка Даши:
Отсюда площадь основания кусочка Даши:
По условию куски Маши и Даши должны быть одинаковы. значит:
Для решения уравнения построим график в Microsoft Excel (картинка).
По графику определим, что равенство выполняется при .
График при напоминает прямую, так как в данном случае имеем место быть первый замечательный предел.
Действительно, можно считать, что рассматриваемый угол α мал. Тогда: в соответствии с первым замечательным пределом. Тогда от имеющегося уравнения можно перейти к более простому:
Искомое расстояние от оси симметрии соответствует уже вводившейся величине d:
По той же причине синус малого аргумента можно заменить самим этим аргументом. Получим:
В частности, для практических целей выполненные приближенные допущения вполне допустимы и удачны.
Вернемся к полученному ранее уравнению:
Заметим, что информация о том, что Маша разрезала свой тортик на 8 частей, сосредоточена в знаменателе правой части. Поэтому, если изначально Маша разрезала тортик на N частей, то проведя аналогичные рассуждения мы получим уравнение вида:
Задание 1.
ответ:
или
Задание 2. Две семьи отправились на детский утренник. Первая семья купила два детских билета и один взрослый и всего заплатила 390 рублей. Вторая семья купила три детских билета и два взрослых и всего заплатила 685 рублей. Сколько стоит один детский билет и сколько стоит один взрослый билет?
Решение.
Пусть х руб. - стоит один детский билет.
По условию 2 детских билета и один взрослый стоят 390 рублей, значит,
(390-2х) руб. - стоит один взрослый билет.
Ещё в условии сказано, что 3 детских билета и 2 взрослых стоят всего 685 рублей.
Получаем уравнение:
3х + 2 · (390-2х) = 685
3х + 780 - 4х = 685
-х = - 95
х = - 95 : (-1)
х = 95 руб. - стоит один детский билет.
390-2·95=200 руб. - стоит один взрослый билет.
Детский билет стоит 95 рублей,
а взрослый билет стоит 200 рублей.
Так как тортики имеют постоянную высоту, то вместо рассмотрения объемов буем рассматривать соответствующие площади оснований.
Площадь основания тортика радиуса R:
Тогда, площадь основания одного Машиного куска:
Рассмотрим Дашин кусок (на картинке). Вертикальной и горизонтальной прямой разобьем его на 4 равные части и рассмотрим одну из них. Проведем еще одну прямую так, чтобы эта часть разделилась на сектор и прямоугольные треугольник.
Рассмотрим полученный сектор. Пусть α - угол между радиусами, образующими сектор. Тогда, площадь сектора:
Рассмотрим прямоугольный треугольник. Зная, что накрест лежащие углы при параллельных прямых равны, получим, что один из острых углов этого треугольника равен α. Выразим через этот угол и известный радиус катеты треугольника:
Площадь прямоугольного треугольника:
Тогда, запишем сумму, представляющую площадь основания четверти кусочка Даши:
Отсюда площадь основания кусочка Даши:
По условию куски Маши и Даши должны быть одинаковы. значит:
Для решения уравнения построим график в Microsoft Excel (картинка).
По графику определим, что равенство выполняется при .
График при напоминает прямую, так как в данном случае имеем место быть первый замечательный предел.
Действительно, можно считать, что рассматриваемый угол α мал. Тогда: в соответствии с первым замечательным пределом. Тогда от имеющегося уравнения можно перейти к более простому:
Искомое расстояние от оси симметрии соответствует уже вводившейся величине d:
По той же причине синус малого аргумента можно заменить самим этим аргументом. Получим:
В частности, для практических целей выполненные приближенные допущения вполне допустимы и удачны.
Вернемся к полученному ранее уравнению:
Заметим, что информация о том, что Маша разрезала свой тортик на 8 частей, сосредоточена в знаменателе правой части. Поэтому, если изначально Маша разрезала тортик на N частей, то проведя аналогичные рассуждения мы получим уравнение вида: