1) у = -4 + 3/(х - 2) Если рассматривать функцию у = 3/(х -2) , то множество значений у будет (-∞ ;0∨(0; +∞) Учитывая функцию -4 + 3/(х -2), множество значений будет (-∞; -4)∨(-4; +∞) 2) -1 ≤Sin x ≤ 1 |·(-3) 3 ≥ -3Sin x ≥ -3 или -3 ≤ -3Sin x ≤ 3 | +4 1 ≤ 4 - 3Sin x ≤ 7 3) y = | x - 2| -1 Если рассматривать функцию у = | x - 2|, то множество значений будет [0 ; + ∞) -1 показывает, что весь график функции у = |x - 2| сдвинут вниз вдоль оси у на 1 единицу. Значит, множество значений будет [ -1; +∞)
1. К параболе проведено ДВЕ касательных, их общие уравнения: 1) в точке а=0 2) в точке b=3
2. Найдем уравнения касательных в указанных точках: 1)
2)
3. Начертим ТРИ графика (парабола и две прямых) в одной системе координат и выделим область, площадь которой нужно найти (см. прикрепление). синим цветом - парабола; красным - касательная Y2; зеленым - касательная Y1. 4. Нужно найти площадь желтой фигуры. Найдем пределы интегрирования, для этого: 4.1)
Если рассматривать функцию у = 3/(х -2) , то множество значений у будет (-∞ ;0∨(0; +∞)
Учитывая функцию -4 + 3/(х -2),
множество значений будет (-∞; -4)∨(-4; +∞)
2) -1 ≤Sin x ≤ 1 |·(-3)
3 ≥ -3Sin x ≥ -3
или
-3 ≤ -3Sin x ≤ 3 | +4
1 ≤ 4 - 3Sin x ≤ 7
3) y = | x - 2| -1
Если рассматривать функцию у = | x - 2|,
то множество значений будет [0 ; + ∞)
-1 показывает, что весь график функции у = |x - 2| сдвинут вниз вдоль оси у на 1 единицу. Значит, множество значений будет [ -1; +∞)
1) в точке а=0
2) в точке b=3
2. Найдем уравнения касательных в указанных точках:
1)
2)
3. Начертим ТРИ графика (парабола и две прямых) в одной системе координат и выделим область, площадь которой нужно найти (см. прикрепление).
синим цветом - парабола; красным - касательная Y2; зеленым - касательная Y1.
4. Нужно найти площадь желтой фигуры.
Найдем пределы интегрирования, для этого:
4.1)
4.2)
4.3)
4.4)
ответ: площадь фигуры равна 2,25 кв.ед.