определена на всей числовой оси, кроме двух точек: x = -5 и x = 5.
Найдём односторонние пределы в этих точках.
1) x = -5. Т.к. в этой точке множитель (x-5) не равен нулю, то его можно сократить.
Оба односторонних предела бесконечны, значит, функция терпит разрыв II рода в точке x = -5. Кстати, уравнение x = -5 есть уравнение вертикальной асимптоты в точке разрыва.
2) x = 5. В этой точке множитель (x + 5) равен 10.
В точке x = 5 функция терпит разрыв, т.к. на ноль делить нельзя. Однако односторонние пределы конечны, следовательно, это точка разрыва I рода. При этом односторонние пределы совпадают, справа и слева значение функции бесконечно приближается к 1/10. Значит, этот разрыв устранимый. Итак, в точке x = 5 функция терпит устранимый разрыв I рода.
Из выше изложенного можно сделать некоторые представления о графике нашей функции. Во-первых, функция слева направо бесконечно убывает, приближаясь к точке х = -5. Во-вторых, справа от точки х = - 5 функция убывает из плюс бесконечности. В точке х = 5 она терпит устранимый разрыв, продолжая дальше убывать. Найдём горизонтальные асимптоты.
Горизонтальная асимптота y = 0. Функция бесконечно приближается к нулю, влево, в минус бесконечность, снизу, справа, в плюс бесконечность, сверху.
* Функция непрерывна при x ∈(-∞; -5) ∪ (-5; 5) ∪ (5; +∞). * В точке x = -5 разрыв II рода, в точке x = 5 устранимый разрыв I рода.
определена на всей числовой оси, кроме двух точек: x = -5 и x = 5.
Найдём односторонние пределы в этих точках.
1) x = -5. Т.к. в этой точке множитель (x-5) не равен нулю, то его можно сократить.
Оба односторонних предела бесконечны, значит, функция терпит разрыв II рода в точке x = -5. Кстати, уравнение x = -5 есть уравнение вертикальной асимптоты в точке разрыва.
2) x = 5. В этой точке множитель (x + 5) равен 10.
В точке x = 5 функция терпит разрыв, т.к. на ноль делить нельзя. Однако односторонние пределы конечны, следовательно, это точка разрыва I рода. При этом односторонние пределы совпадают, справа и слева значение функции бесконечно приближается к 1/10. Значит, этот разрыв устранимый.
Итак, в точке x = 5 функция терпит устранимый разрыв I рода.
Из выше изложенного можно сделать некоторые представления о графике нашей функции. Во-первых, функция слева направо бесконечно убывает, приближаясь к точке х = -5. Во-вторых, справа от точки х = - 5 функция убывает из плюс бесконечности. В точке х = 5 она терпит устранимый разрыв, продолжая дальше убывать.
Найдём горизонтальные асимптоты.
Горизонтальная асимптота y = 0. Функция бесконечно приближается к нулю, влево, в минус бесконечность, снизу, справа, в плюс бесконечность, сверху.
* Функция непрерывна при x ∈(-∞; -5) ∪ (-5; 5) ∪ (5; +∞).
* В точке x = -5 разрыв II рода, в точке x = 5 устранимый разрыв I рода.
1ч30мин=1.5ч
х-скорость автомобиля
t-время в пути мотоциклиста до встречи с автомобилем (из А до С)
t+1.5-время в пути автомобиля до встречи с мотоциклистом (из А до С)
t=1.5x/(75-x)
х*t= расстояние из С в В, которое проехал автомобиль
375-75t=расстояние из С в В, которое не проехал мотоциклист
375-75t=xt
xt+75t=375
t(x+75)=375
x+75=375/t
x+75=375:(1.5x/(75-x))
х+75=375*((75-х)/1.5х)
х+75=(28125-375х)/1.5х
28125-375х=1.5х(х+75)
28125-375х=1.5х^2+112.5х
1.5х^2+487.5х-28125=0
Д=237656.25+168750=406406.25
корень из Д=637,5
х1=(-487.5-637.5)/3=-375 не подходит
х2=(-487.5+637.5)/3=50км/ч скорость автомобиля
50*1.5=75км проехал автомобиль за 1ч30мин
75-50=25км/ч скорость сближения
75:25=через 3 часа мотоцикл догнал автомобиль в С
3*75=50(3+1.5)
225=225км расстояние от А до С
проверяем:
375-225=150км от С до В
150:50=3 часа ехал автомобиль из С до В
225:75=3 часа ехал назад мотоцикл из С в А