В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
школьник619
школьник619
10.02.2023 22:15 •  Алгебра

Вершины треугольника АВС имеют координаты А(-2;0;1), В (-1;2;3), С (8;-4;9) Найдите координаты вектора ВМ, если ВМ медиана треугольника АВС

Показать ответ
Ответ:
юля2759
юля2759
02.10.2022 02:18
Функция
y= \frac{x-5}{x^2-25} = \frac{x-5}{(x-5)(x+5)}
определена на всей числовой оси, кроме двух точек: x = -5 и  x = 5.

Найдём односторонние пределы в этих точках.

1) x = -5. Т.к. в этой точке множитель (x-5) не равен нулю, то его можно сократить.
\lim_{x \to \inft{-5_{-0}}} \frac{x-5}{(x-5)(x+5)} =\lim_{x \to \inft{-5_{-0}}} \frac{1}{x+5} =-\infty \\ \\ \lim_{x \to \inft{-5_{+0}}} \frac{x-5}{(x-5)(x+5)} =\lim_{x \to \inft{-5_{+0}}} \frac{1}{x+5} =+\infty

Оба односторонних предела бесконечны, значит, функция терпит разрыв II рода в точке x = -5. Кстати, уравнение x = -5 есть уравнение вертикальной асимптоты в точке разрыва.

2) x = 5. В этой точке множитель (x + 5) равен 10.
\lim_{x \to \inft{+5_{-0}}} \frac{x-5}{(x-5)(x+5)} =\lim_{x \to \inft{+5_{-0}}} \frac{1}{x+5} *\lim_{x \to \inft{+5_{-0}}} \frac{x-5}{x-5}= \\ \\ \frac{1}{10} *1=\frac{1}{10} \\ \\ \lim_{x \to \inft{+5_{+0}}} \frac{x-5}{(x-5)(x+5)} =\lim_{x \to \inft{+5_{+0}}} \frac{1}{x+5} *\lim_{x \to \inft{+5_{+0}}} \frac{x-5}{x-5}= \\ \\ \frac{1}{10} *1=\frac{1}{10}

В точке x = 5 функция терпит разрыв, т.к. на ноль делить нельзя. Однако односторонние пределы конечны, следовательно, это точка разрыва I рода. При этом односторонние пределы совпадают, справа и слева значение функции бесконечно приближается к 1/10. Значит, этот разрыв устранимый.
Итак, в точке x = 5 функция терпит устранимый разрыв I рода.

Из выше изложенного можно сделать некоторые представления о графике нашей функции. Во-первых, функция слева направо бесконечно убывает, приближаясь к точке х = -5. Во-вторых, справа от точки х = - 5 функция убывает из плюс бесконечности. В точке х = 5 она терпит устранимый разрыв, продолжая дальше убывать.
Найдём горизонтальные асимптоты.
\lim_{x \to -\infty} \frac{x-5}{(x-5)(x+5)}=\lim_{x \to -\infty} \frac{1}{x+5}= \lim_{x \to -\infty} \frac{1}{x(1+5/x)}= \\ \\ = \frac{1}{-\infty}(1+ \frac{5}{-\infty}} )}=\frac{1}{-\infty}(1+ 0)}=-0 \\ \\ \lim_{x \to +\infty} \frac{x-5}{(x-5)(x+5)}=\lim_{x \to +\infty} \frac{1}{x+5}= \lim_{x \to +\infty} \frac{1}{x(1+5/x)}= \\ \\ = \frac{1}{+\infty}(1+ \frac{5}{+\infty}} )}=\frac{1}{+\infty}(1+ 0)}=+0

Горизонтальная асимптота y = 0. Функция бесконечно приближается к нулю, влево, в минус бесконечность, снизу, справа, в плюс бесконечность, сверху.

* Функция непрерывна при x ∈(-∞; -5) ∪ (-5; 5) ∪ (5; +∞).
* В точке x = -5 разрыв II рода, в точке x = 5 устранимый разрыв I рода.
0,0(0 оценок)
Ответ:
milka293
milka293
05.11.2020 17:57

1ч30мин=1.5ч

х-скорость автомобиля

t-время в пути мотоциклиста до встречи с автомобилем (из А до С)

t+1.5-время в пути автомобиля до встречи с мотоциклистом (из А до С)

 

t=1.5x/(75-x)

х*t= расстояние из С в В, которое проехал автомобиль

375-75t=расстояние из С в В, которое не проехал мотоциклист

375-75t=xt

xt+75t=375

t(x+75)=375

x+75=375/t

x+75=375:(1.5x/(75-x))

х+75=375*((75-х)/1.5х)

х+75=(28125-375х)/1.5х

28125-375х=1.5х(х+75)

28125-375х=1.5х^2+112.5х

1.5х^2+487.5х-28125=0

Д=237656.25+168750=406406.25

корень из Д=637,5

х1=(-487.5-637.5)/3=-375 не подходит

х2=(-487.5+637.5)/3=50км/ч скорость автомобиля

 

50*1.5=75км проехал автомобиль за 1ч30мин

75-50=25км/ч скорость сближения

75:25=через 3 часа мотоцикл догнал автомобиль в С

3*75=50(3+1.5)

  225=225км расстояние от А до С

 

проверяем:

375-225=150км от С до В

150:50=3 часа ехал автомобиль из С до В

225:75=3 часа ехал назад мотоцикл из С в А

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота