В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
lukynova20
lukynova20
24.03.2020 03:15 •  Алгебра

Вычислить площадь фигуры ограниченной линиями y=x3 y=8 x=1

Показать ответ
Ответ:
pankuznetsov
pankuznetsov
23.05.2020 15:29
Сначала необходимо построить график (см. рисунок), и определиться, какая площадь искомая. В нашем случае, это часть плоскости от 1 до 2, сверху ограниченная кубической параболой y=x^3, а снизу - прямой у=8. Значит, при интегрировании мы будем вычитать из функции y=x^3 функцию  у=8. 

 \int\limits^2_1 {(8-x^3)} \, dx =(8x- \frac{x^4}{4} )|^2_1=8*2-\frac{2^4}{4}-8*1+\frac{1^4}{4}=\\=16-\frac{16}{4}-8+\frac{1}{4}=16-4-8+0,25=4,25

ответ: 4,25.
Вычислить площадь фигуры ограниченной линиями y=x3 y=8 x=1
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота