Нехай подія Н1 полягає в тому, що стрілець, який влучає у мiшень з iмовiрнiстю 0.8. Н2-з iмовiрнiстю 0.7; Н3 - з iмовiрнiстю 0.6; Н4- з iмовiрнiстю 0.5
- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Відповідь:
Пояснення:
Нехай подія Н1 полягає в тому, що стрілець, який влучає у мiшень з iмовiрнiстю 0.8. Н2-з iмовiрнiстю 0.7; Н3 - з iмовiрнiстю 0.6; Н4- з iмовiрнiстю 0.5
Подія А - стрілець у мiшень не влучив.
Р(Н1)=5/18. Р(А/Н1)=1-0.8=0.2
Р(Н2)=7/18. Р(А/Н2)=1-0.7=0.3
Р(Н3)=4/18. Р(А/Н3)=1-0.6=0.4
Р(Н4)=2/18. Р(А/Н4)=1-0.5=0.5
Підрахуємо Р(А)=Р(Н1)×Р(А/Н1)+Р(Н2)×Р(А/Н2)+ Р(Н3)×Р(А/Н3)+Р(Н4)×Р(А/Н4)= 1/18×(5×0.2+7×0.3+4×0.4+2×0.5)=5.7/18=0.3167
Р(Н1/А)=Р(Н1)Р(А/Н1)/Р(А)=5/18×0.2/0.3167=0.1754
Р(Н2/А)=Р(Н2)Р(А/Н2)/Р(А)=7/18×0.3/0.3167=0.3684
Р(Н3/А)=Р(Н3)Р(А/Н3)/Р(А)=4/18×0.4/0.3167=0.2807
Р(Н4/А)=Р(Н4)Р(А/Н4)/Р(А)=2/18×0.5/0.3167=0.1754
Найбільша ймовірність, що стрілець належав до другої групи Н2
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)