В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
sludkov
sludkov
05.03.2020 17:22 •  Алгебра

X2+2x/3+4x+1/5=o
Квадратное уровнение решить❤️​​

Показать ответ
Ответ:
J22UKR
J22UKR
25.01.2022 12:03
1.ответ-0,126
2.ответ-37 530
3.ответ-0,0368
4.ответ-0,2
5.ответ-0,8
6.ответ-130
7.(5-2.8)*2,4+1,12:1,6

2.2*2.4+0,7

5,28+0,7

ответ : 5,98

8.0,084:(6,2-x)=1,2

0.084:(6,2x)=1,2,x неравно 6,2

21/250:(31/5-x)=1.2

21/250:31-5x/5=1,2

21/50*1/31/5x=1.2

21/50(31-5x)=1.2

21=60(31-5x)

21=1860-300x

300x=1860-21

300x=1839

X=613/100,x неравно 31/5

X=613/100

9.

1.28,2+2,1=30,3 км/ч-скорость по течению реки
2.28,2-2,1=26,1 км/я -скорость против течения реки
3.1,6*26,1=41,76 км -проплыл против течения реки
4.2,4*30,3=72,72 км- проплыл против течения реки
5.72,72-41,76=30,96 км -настояло больше проплыл катер по течению реки

10.
Пусть x это дробь котловая сначала
Еси мы передвигаем запятую вправо,то дробь увеличивается,в нашем случае на 10
Составим уравнение:
10x-x=23,49
9x=23,49
X=23,49/9
X=2,61
Проверяем
2,61 сдвигаем запятую 26,1
26,1-2,61=23,49
Дробь увеличилась на 23,49
ответ 2,61

Надеюсь Я старался)
0,0(0 оценок)
Ответ:
taniussa1
taniussa1
16.04.2023 07:24

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота