1) 25X^2 - 75X^2 - 17X + 6 = 0
25*(5)^2 - 75*25 - 85 + 6 = 625 - 1875 - 85 + 6 = 631 - 1960 = - 1329
ОТВЕТ: число 5 НЕ ЯВЛЯЕТСЯ КОРНЕМ ДАННОГО УРАВНЕНИЯ
2) 3*(2X-7) = 6X+1
6X - 21 = 6X + 1
6X - 6X = 22
0X = 22
ОТВЕТ: КОРНЕЙ НЕТ
4) (X-1)*(X+1) = 0
X1 = 1 X2 = - 1
(X+1)^2 = 2X+2
X^2 + 2X + 1 = 2X + 2
X^2 + 2X + 1 - 2X - 2 = 0
X^2 - 1 = 0
X^2 = 1 ---> X1 = V 1 = 1 (один корень)
ОТВЕТ: НЕ ЯВЛЯЕТСЯ
|X| - 1 = 0
|X| = 1
ОТВЕТ: ЯВЛЯЕТСЯ
X^2 = 1
(X-1) = (X+1)
Корней нет : НЕ ЯВЛЯЕТСЯ
5) 2X+3A = 5X - 6B
5X - 2X = 3A + 6B
3X = 3*(A + 2B)
X = A + 2B
3) - 24X = - 5
AX = B
48X = 10
72X = 15
следующий: b1*q
третий: b1*q² (q > 0)
b1 + b1*q + b1*q² = 21
b1*(1+q+q²) = 21 ---> b1 = 21 / (1+q+q²)
(1 / b1) + (1 / (b1*q)) + (1 / (b1*q²)) = 7/12
(1 / b1)*(1 + (1/q) + (1/q²)) = 7/12
((1+q+q²) / 21)*((q²+q+1) / q²) = 7/12
(1+q+q²)² = (7/12) * 21q²
((1+q+q²) / q)² = 49/4
(1+q+q²) / q = 7/2 или (1+q+q²) / q = -7/2
2+2q+2q² = 7q или 2+2q+2q² = -7q
2q²-5q+2 = 0 или 2q²+9q+2 = 0
D=25-16=3² D=81-16=65
q1 = (5-3)/4 = 0.5 q3 = (-9-√65)/4 < 0
q2 = (5+3)/4 = 2 q4 = (-9+√65)/4 < 0
1) q = 1/2 --- убывающая последовательность
b1 = 21 / (1+0.5+0.25) = 21 / 1.75 = 12
b2 = 12*0.5 = 6
b3 = 6*0.5 = 3 их сумма = 21
(1/12) + (1/6) + (1/3) = (1/12) + (2/12) + (4/12) = 7/12
2) q = 2 --- возрастающая последовательность
b1 = 21 / (1+2+4) = 3
b2 = 3*2 = 6
b3 = 6*2 = 12 их сумма = 21
(1/12) + (1/6) + (1/3) = (1/12) + (2/12) + (4/12) = 7/12
1) 25X^2 - 75X^2 - 17X + 6 = 0
25*(5)^2 - 75*25 - 85 + 6 = 625 - 1875 - 85 + 6 = 631 - 1960 = - 1329
ОТВЕТ: число 5 НЕ ЯВЛЯЕТСЯ КОРНЕМ ДАННОГО УРАВНЕНИЯ
2) 3*(2X-7) = 6X+1
6X - 21 = 6X + 1
6X - 6X = 22
0X = 22
ОТВЕТ: КОРНЕЙ НЕТ
4) (X-1)*(X+1) = 0
X1 = 1 X2 = - 1
(X+1)^2 = 2X+2
X^2 + 2X + 1 = 2X + 2
X^2 + 2X + 1 - 2X - 2 = 0
X^2 - 1 = 0
X^2 = 1 ---> X1 = V 1 = 1 (один корень)
ОТВЕТ: НЕ ЯВЛЯЕТСЯ
|X| - 1 = 0
|X| = 1
ОТВЕТ: ЯВЛЯЕТСЯ
X^2 = 1
ОТВЕТ: ЯВЛЯЕТСЯ
(X-1) = (X+1)
Корней нет : НЕ ЯВЛЯЕТСЯ
5) 2X+3A = 5X - 6B
5X - 2X = 3A + 6B
3X = 3*(A + 2B)
X = A + 2B
3) - 24X = - 5
AX = B
48X = 10
72X = 15