Пусть первый насос выкачивает воду из резервуара за Х часов, тогда второй насос выкачивает воду из резервуара за (Х + 2) часов, так как, по условию, первый насос выкачивает воду из резервуара на 2 часа быстрее, чем второй насос. За 1 час первый насос выкачивает (1 : Х) часть резервуара, а второй насос выкачивает 1 : (Х + 2) часть резервуара, значит, работая совместно, они за 1 час выкачивают^
√(12+x)=1+ √(1-x)
Возводим в квадрат обе части уравнения
12+x=1+2 √(1-x)+(1-x)
12+x-1-1+x=2 √(1-x)
10+2x=2 √(1-x) Делим все на2
5+x= √(1-x)
Опять возводим в квадрат
25+10x+x^2=1-x
x^2+10x+x+25-1=0
x^2+11x+24=0
D=121-4*24
D=25
x1=(-11+5)/2=-3
x2=(-11-5)/2=-8
Делаем обязательно проверку
x1=-3
√(12-3)- √(1+3)= 1
√9- √4=3-2=1
1=1. Значит х1=-3 корень
x2=-8
√(12-8)- √(1+8)= 1
√(4- √(9)= 1. Получаем 2-3=-1
-1не=1. Значит x2=-8 посторонний корень
ответ: x=-3
Пусть первый насос выкачивает воду из резервуара за Х часов, тогда второй насос выкачивает воду из резервуара за (Х + 2) часов, так как, по условию, первый насос выкачивает воду из резервуара на 2 часа быстрее, чем второй насос. За 1 час первый насос выкачивает (1 : Х) часть резервуара, а второй насос выкачивает 1 : (Х + 2) часть резервуара, значит, работая совместно, они за 1 час выкачивают^
(1 : Х) + 1 : (Х + 2) = 2(Х + 1)/(Х(Х + 2)) часть резервуара
и весь резервуар выкачают за:
1 : 2(Х + 1)/(Х(Х + 2)) = (Х(Х + 2))/2(Х + 1) (часов).
Зная, что первый насос выкачивает воду из резервуара на 40 мин = 2/3 часа медленнее, чем работая вместе со вторым насосом, составляем уравнение:
Х – 2/3 = (Х(Х + 2))/2(Х + 1);
3Х^2 – 4Х – 4 = 0;
Х = - 2/3 – не удовлетворяет условию задачи;
Х = 2 (часа).
ответ: за 2 часа первый насос выкачивает воду из резервуара