2. У якому випадку (мал.2) зобра- жено схему кола, B якому при замиканні ключа 2) Мал. 2 3) 2 дзвінок працює, лампочка не світить? а) 1 і 2; б) лише 1 в) лише 2 г)лище 3 д) 1, 2 і 4,
f = 6/60 = 0.1 об/с — частота вращения платформы ω = 2πf = 2π*0.1 рад/с — угловая частота вращения её.
Момент инерции однородного диска равен I1 = m1 * R^2 / 2, где R — радиус диска (платформы) По условию задачи, видимо, предполагается, что человек стоит на краю платформы, которая уже вращается с указанной частотой.
Момент инерции человека относительно той же оси равен I2 = m2 * R^2
Суммарный момент импульса системы относительно точки вращения равен L = (I1 + I2)*ω
По условию задачи - человек переходит с края в центр, при этом предполагается, что на систему уже не действуют внешние силы или их момент равен нулю относительно точки / оси вращения, тогда момент импульса сохраняется.
Момент импульса системы после перехода человека в центр равен уравнению L = I1*ω1 (и вклад человека в момент импульса теперь равен 0)
Приравнивая, находим новую частоту вращения платформы с человеком:
По поводу ответа Сергея Гаврилова: силовые линии электростатического поля еще как пересекаются. Достаточно вспомнить картину силовых линий точечного заряда. Они все пересекаются в той точке, где находится заряд. И да, в этой точке направление электрического поля неоднозначно, как и сказал Сергей Гаврилов. А величина его равна нулю. И силовые линии пОля двух одинаковых точечных зарядов одного знака тоже пересекаются - точно в середине между зарядами. И поле в этой точке тоже равно нулю. Это вообще характерное заблуждение по поводу электростатических полей: считать, что их силовые линии не могут пересекаться. На самом деле - могут, но только в точках, где величина поля равна нулю.
m2 = 80кг
n = 6
f = 6/60 = 0.1 об/с — частота вращения платформы
ω = 2πf = 2π*0.1 рад/с — угловая частота вращения её.
Момент инерции однородного диска равен
I1 = m1 * R^2 / 2, где R — радиус диска (платформы)
По условию задачи, видимо, предполагается, что человек стоит на краю платформы, которая уже вращается с указанной частотой.
Момент инерции человека относительно той же оси равен I2 = m2 * R^2
Суммарный момент импульса системы относительно точки вращения равен
L = (I1 + I2)*ω
По условию задачи - человек переходит с края в центр, при этом предполагается, что на систему уже не действуют внешние силы или их момент равен нулю относительно точки / оси вращения, тогда момент импульса сохраняется.
Момент импульса системы после перехода человека в центр равен уравнению L = I1*ω1
(и вклад человека в момент импульса теперь равен 0)
Приравнивая, находим новую частоту вращения платформы с человеком:
ω1 = ω * (I1 + I2) / I1= ω * (m1 / 2 + m2) / (m1 / 2) = ω * (1 + 2*m2/m1)
или ω1 = 2π*0,1 * (1 + 2*80/120) = 2π * 7/30 рад/с
поэтому f1 = ω1/(2π) = 7/30 об/с
или 14 оборотов в минуту