В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
TurboDan
TurboDan
10.08.2021 18:47 •  Физика

Centre of the Sun Surface of the Sun Light bulb filament Fire Human body Freezing point of water Freezing point of mercury Absolute zero Match the objects with their possible temperatures. 2800°C, 900°C, -273°C, 15000000°C, 36.6°C, -37°C, 6000°C, 0°C.​


Centre of the Sun Surface of the Sun Light bulb filament Fire Human body Freezing point of water Fre

Показать ответ
Ответ:
tanshka
tanshka
29.09.2021 22:10

1) В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением: A = p (V2 – V1) = pΔV. В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0. Первый закон термодинамики для изотермического процесса выражается соотношением Q = A.

2)Вну́тренняя эне́ргия — принятое в физике сплошных сред, термодинамике и статистической физике название для той части полной энергии термодинамической системы, которая не зависит от выбора системы отсчета[1] и которая в рамках рассматриваемой задачи может изменяться[2]. То есть для равновесных процессов в системе отсчета, относительно которой центр масс рассматриваемого макроскопического объекта покоится, изменения полной и внутренней энергии всегда совпадают. Перечень составных частей полной энергии, входящих во внутреннюю энергию, непостоянен и зависит от решаемой задачи. Иначе говоря, внутренняя энергия — это не специфический вид энергии[3], а совокупность тех изменяемых составных частей полной энергии системы, которые следует учитывать в конкретной ситуации.

Внутренняя 

0,0(0 оценок)
Ответ:
zoonadin
zoonadin
31.01.2021 04:27

Объяснение:

Задание. Исследовать скатывание цилиндров и шара по наклонной плоскости.

Примечание: если цилиндр или шар скатывается по наклонной плоскости, расположенной под небольшим углом к горизонту, то скатывание происходит без проскальзывания. Если угол наклона плоскости превысит некоторое предельное значение, то скатывание будет происходить с проскальзыванием.

При выполнении задания необходимо определить тот предельный угол, при котором скатывание тел начнет происходить с проскальзыванием. По результатам исследования составить отчет, в котором отразить методику исследования, предоставить таблицу результатов наблюдений и дать объяснение, почему при угле, превышающем некоторое значение, скатывание тел происходит с проскальзыванием.

Кроме того, в задачу входит определение момента инерции цилиндров и шара no результатам наблюдений скатывания их с наклонной плоскости.

Краткая теория

Положим, цилиндр катится по наклонной плоскости без скольжения. На цилиндр действуют внешние силы: сила тяжести  , сила трения  , и сила реакции со стороны плоскости  . Движение рассматриваем как поступательное со скоростью, равной скорости центра масс, и вращательное относительно оси, проходящей через центр масс.

Уравнение для движения центра масс шара (цилиндра)

или в скалярном виде в проекциях:

на ось OX:  .

на ось ОУ:  

Уравнение моментов относительно оси  

.

При отсутствии проскальзывания

.

Найдем ускорение, которое приобретает цилиндр под действием указанных сил. Оно может быть найдено путем использования выражения для кинетической энергии катящегося тела

, (1)

где  - масса шара (цилиндра),  - скорость поступательного движения центра масс,  - момент инерции шара, относительно оси вращения,  - угловая скорость вращения, относительно оси вращения.

Изменение кинетической энергии тела равно работе внешних сил, действующих на тело. Элементарная работа силы трения  и реакции, плоскости  равна нулю, т.к. линии действия их проходят через мгновенную ось вращения (  ). Следовательно, изменение кинетической энергии тела происходит только за счёт работы силы тяжести  

(2)

или проинтегрировав выражение (2) в пределах от  до  , получим,

где  - кинетическая энергия тела в конце наклонной плоскости,  - начальная энергия (кинетическая) тела,  ;  - длина наклонной плоскости, тогда энергия тела

, (3)

откуда

. (4)

Поступательное движение тела по наклонной плоскости происходит равноускоренно, поэтому можно записать

, (5)

где  - конечная скорость центра масс в конце наклонной плоскости,  - начальная скорость, она равна нулю, поэтому

, (6)

так как

(7)

Выражение (4) с учетом (6) и (7) может быть записано

, (8)

где  – ускорение поступательного движения тела при скатывании по наклонной плоскости.

Так как это равноускоренное движение с начальной скоростью  , то можно записать  или  , подставляя значение а в (8) окончательно получим

, (9)

где  - время скатывания тела по наклонной плоскости,  - радиус шара (цилиндра),  - масса шара (цилиндра),  - угол наклона плоскости к горизонту,  - длина наклонной плоскости.

Измерив указанные выше величины, можно вычислить момент инерции скатывающегося цилиндра. Он может быть сплошным, пустотелым, с канавками на его образующей поверхности и т.д. Формула (9): справедлива и для цилиндров и для шара.

Эксперимент с каждым из тел проводить не менее трех раз. Результаты наблюдений и вычислений занести в таблицу 1.

Таблица 1

№ п/п Форма скатывающегося тела Масса  , кг Радиус  , м Длина наклонной плоскости  (м) Время скатывания, с Момент инерции  , кг·м2

     

                 

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота