После того, как предмет приблизили к линзе d1 = d-1; f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1 Рассуждая аналогично, ка было сделано выше получаем: 1/F = 1/d1 + 1/f1 или 1/F = f1*d1 / (f1+d2) 1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи: 2·d / (2+1) = 4·(d-1) / (4+1) d = 6 см f = 12 см
d1 = 5 f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см Экран передвинули на 20-12 = 8 см
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1 тогда A1C1=AM и C1B1=CK
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1 тогда A1C1=AM и C1B1=CK треугольники AMC и СKB - подобные и
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1 тогда A1C1=AM и C1B1=CK треугольники AMC и СKB - подобные и AM : AV = CK : CB => AM : CK = AC : CB => AM :CK = 4 :3
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1 тогда A1C1=AM и C1B1=CK треугольники AMC и СKB - подобные и AM : AV = CK : CB => AM : CK = AC : CB => AM :CK = 4 :3 то есть A1C1 : C1 :B1 =4 :3
Г= f / d, (1)
где
f - расстояние до изображения предмета
d - расстояние до предмета,
тогда f = Г·d:
По формуле тонкой линзы:
1/F = 1/d + 1/f или
1/F =f·d / (f +d)
1/F = Г·d*d / (Г·d+d) = Г·d / (Г+1) (1)
После того, как предмет приблизили к линзе d1 = d-1;
f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1
Рассуждая аналогично, ка было сделано выше получаем:
1/F = 1/d1 + 1/f1 или
1/F = f1*d1 / (f1+d2)
1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи:
2·d / (2+1) = 4·(d-1) / (4+1)
d = 6 см
f = 12 см
d1 = 5
f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см
Экран передвинули на 20-12 = 8 см
ответ: 8 сантиметров
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1 тогда A1C1=AM и C1B1=CK
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1 тогда A1C1=AM и C1B1=CK треугольники AMC и СKB - подобные и
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1 тогда A1C1=AM и C1B1=CK треугольники AMC и СKB - подобные и AM : AV = CK : CB => AM : CK = AC : CB => AM :CK = 4 :3
1) из точки A - проведем прямую AM1 параллельную A1B1 и пусть эта прямая пересекает СС1 в точке M из точки С - проведем прямую CK1 параллельную A1B1 тогда A1C1=AM и C1B1=CK треугольники AMC и СKB - подобные и AM : AV = CK : CB => AM : CK = AC : CB => AM :CK = 4 :3 то есть A1C1 : C1 :B1 =4 :3