Дано: Ek=150Дж, alpha=30, h1=1.5м, m=2кг, Fc=0 Найти: Ep(max) Решение: 1) Во-первых, стоит понимать, что энергия, затраченная на толкание ядра - это кинетическая энергия Ek. Работа, затраченная на толкание ядра до максимальной высоты равна разности конечной и начальной кинетических энергий dEk. При этом в максимальной точке поднятия ядра скорость равняется нулю и, следовательно, кинетическая энергия ядра равняется нулю. Тогда A=m*V0^2/2, где V0 - начальная скорость ядра. Отсюда выводим V0=sqrt(2A/m), где sqrt(...) - квадратный корень. 2) В проекции на ось OY получаем: V0(y)=sqrt(2A/m)*sin(alpha) 3)S(y)=h2(высота, на которую поднялось тело из h1)=(V(y)^2-V0(y)^2)/2g. Подставляя найденную формулу начальной скорости (конечная - ноль): h2=2Asin^2(alpha)/2gm=Asin^2(alpha)/gm. 4) Максимальная высота подъема h(max)=h1+h2=h1+Asin^2(alpha)/gm=(h1gm+Asin^2(alpha))/gm 5) Потенциальная энергия в максимальной точке подъема h(max) равна Ep(max)=mg*h(max)=h1mg(gm+Asin^2(alpha))/mg=h1(gm+Asin^2(alpha))=1.5(20+150*0.25)=86.25Дж
В сообщающихся сосудах покоящаяся жидкость находится на одном уровне, но в сосудах с жидкостями различной плотности жидкость с меньшей плотностью останется на более высоком уровне, чем жидкость с большей. Так как ртуть тяжелее воды, то вода останется на поверхности узкого сосуда, а в широкомбудет только ртуть. Пусть d - диаметр поперечного сечения узкого сосуда, тогда 4d - широкого. При добавлени воды в узкий сосуд действует сила F=1000*g*pi*d^2/4=250*g*pi*d^2 Н. Под действием этой силы уровень ртути в широком сосуде повышается до тех пор, пока дополнительный объём ртути своей массой не скомпенсирует массу добавленной воды. Пусть ртуть в широком сосуде при этом поднимется на h м, тогда дополнительный объём ртути V=pi*(4d)^2/4*h=4*pi*d^2*h, а масса этого объёма ртути будет равна 13600*4*pi*d^2*h. Приравнивая эту массу к массе добавленной воды, получаем 54400*pi*d^2*h=250*pi*d^2, откуда h=250/54400=0,0046 м=0,46 см
Найти: Ep(max)
Решение: 1) Во-первых, стоит понимать, что энергия, затраченная на толкание ядра - это кинетическая энергия Ek. Работа, затраченная на толкание ядра до максимальной высоты равна разности конечной и начальной кинетических энергий dEk. При этом в максимальной точке поднятия ядра скорость равняется нулю и, следовательно, кинетическая энергия ядра равняется нулю. Тогда A=m*V0^2/2, где V0 - начальная скорость ядра. Отсюда выводим V0=sqrt(2A/m), где sqrt(...) - квадратный корень.
2) В проекции на ось OY получаем: V0(y)=sqrt(2A/m)*sin(alpha)
3)S(y)=h2(высота, на которую поднялось тело из h1)=(V(y)^2-V0(y)^2)/2g. Подставляя найденную формулу начальной скорости (конечная - ноль): h2=2Asin^2(alpha)/2gm=Asin^2(alpha)/gm.
4) Максимальная высота подъема h(max)=h1+h2=h1+Asin^2(alpha)/gm=(h1gm+Asin^2(alpha))/gm
5) Потенциальная энергия в максимальной точке подъема h(max) равна Ep(max)=mg*h(max)=h1mg(gm+Asin^2(alpha))/mg=h1(gm+Asin^2(alpha))=1.5(20+150*0.25)=86.25Дж