Нарисуйте рычаг, точка опоры которого находится между точками приложения сил. Где применяется такой рычаг? 5. Нарисуйте рычаг, точка опоры которого находится на одном из концов рычага. Где применяется такой рычаг?
Числа π и e Все знают геометрический смысл числа π — это длина окружности с единичным диаметром:А вот смысл другой важной константы, e, имеет свойство быстро забываться. То есть, не знаю, как вам, а мне каждый раз стоит усилий вспомнить, чем же так замечательно это число, равное 2,7182818284590... (значение я, однако, по памяти записал). Поэтому я решил написать заметку, чтобы больше из памяти не вылетало.Число e по определению — предел функции y = (1 + 1 / x)x при x → ∞:xy1(1 + 1 / 1)1= 22(1 + 1 / 2)2= 2,253(1 + 1 / 3)3= 2,3703703702...10(1 + 1 / 10)10= 2,5937424601...100(1 + 1 / 100)100= 2,7048138294...1000(1 + 1 / 1000)1000= 2,7169239322...∞lim× → ∞= 2,7182818284590...Это определение, к сожалению, не наглядно. Непонятно, чем замечателен этот предел (несмотря на то, что он называется «вторым замечательным»). Подумаешь, взяли какую-то неуклюжую функцию, посчитали предел. У другой функции другой будет.Но число e почему-то всплывает в целой куче самых разных ситуаций в математике.Для меня главный смысл числа e раскрывается в поведении другой, куда более интересной функции,y = kx. Эта функция обладает уникальным свойством при k = e, которое можно показать графически так:В точке 0 функция принимает значение e0 = 1. Если провести касательную в точке x = 0, то она пройдёт к оси абсцисс под углом с тангенсом 1 (в жёлтом треугольнике отношение противолежащего катета 1 к прилежащему 1 равно 1). В точке 1 функция принимает значение e1 = e. Если провести касательную в точке x = 1, то она пройдёт под углом с тангенсом e (в зелёном треугольнике отношение противолежащего катета e к прилежащему 1 равно e). В точке 2 значение e2 функции снова совпадает с тангенсом угла наклона касательной к ней. Из-за этого, заодно, сами касательные пересекают ось абсцисс ровно в точках −1, 0, 1, 2 и т. д.Среди всех функций y = kx (например, 2x, 10x, πx и т. д.), функция ex — единственная обладает такой красотой, что тангенс угла её наклона в каждой её точке совпадает со значением самой функции. Значит по определению значение этой функции в каждой точке совпадает со значением её производной в этой точке: (ex)´ = ex. Почему-то именно число e = 2,7182818284590... нужно возводить в разные степени, чтобы получилась такая картинка.Именно в этом, на мой вкус, состоит его смысл.Числа π и e входят в мою любимую формулу — формулу Эйлера, которая связывает 5 самых главных констант — ноль, единицу, мнимую единицу i и, собственно, числа π и е:eiπ + 1 = 0Почему число 2,7182818284590... в комплексной степени 3,1415926535...i вдруг равно минус единице? ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.Меня всегда поражала красота этой формулы. Возможно, в математике есть и более удивительные факты, но для моего уровня (тройка в физико-математическом лицее и пятёрка за комплексный анализ в универе) это самое главное чудо.
6) Полное ускорение a = √(an ²+ aτ²) = √(60,5²+12²) = 62 м/с² (Замечание - в задаче солишком много спрашивается. не многие соберутся решать такую длинную задачу :
R = 0,5 м
φ = 5*t -0,5*t⁴
t = 2 c
1) Угловая скорость это первая производная от φ по времени
ω(t) = (φ) ' = 5 - 2*t³
ω(2) = 5 - 2*2³ = - 11 рад/c
2) Угловое ускорение - производная от ω по времени:
ε(t) = -6*t²
ε(2) = -6*2² = -24 рад/с²
3) Модуль линейной скорости:
V = ω*R = 11*0,5 = 5,5 м/с
4) Нормальное ускорение:
an = V² /R = 5,5² / 0,5 = 60,5 м/с
5) Тангенциальное ускорение:
aτ = ε*R = -24*0,5 = - 12 м/с²
6) Полное ускорение
a = √(an ²+ aτ²) = √(60,5²+12²) = 62 м/с² (Замечание - в задаче солишком много спрашивается. не многие соберутся решать такую длинную задачу :