Нужна по ! газовые законы. дан график. а) назвать процессы с идеальным газом б) изобразить графически в координатах р,т. (составить таблицу) прям, заранее !
Предположим, что двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до спортплощадки 100 метров. Первый школьник добежал за 25 секунд. Второй за 50 секунд. Кто добежал быстрее?
Быстрее добежал тот, кто за 1 секунду пробежал бóльшее расстояние. Говорят, что у него скорость движения больше. В данном случае скорость школьников это расстояние, которое они пробегают за 1 секунду.
Чтобы найти скорость, нужно расстояние разделить на время движения. Давайте найдём скорость первого школьника. Для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:
Дано: S = 100 м V₁ = 10 м/с V₂ = 15 м/с t - ? Решение: Примем воду за неподвижную систему отсчета, а теплоход за подвижную систему отсчета. Тогда по закону сложения скоростей Vабс(вектор) = Vпер(вектор) + Vотн(вектор), откуда Vотн(вектор) = Vабс(вектор) - Vпер(вектор) Выполнив векторное вычитание, получим, что на пути катера к корме теплохода Vотн = V₂ - V₁, а на обратном пути Vотн = V₁ + V₂ Время до корма теплохода t₁ = S / (V₂ - V₁), а время t₂ = S / (V₁ + V₂). t = t₁ + t₂ t = S / (V₂ - V₁) + S / (V₁ + V₂) t = 100 / 5 + 100 / 25 = 20 + 4 = 24 с ответ: 24 с
Предположим, что двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до спортплощадки 100 метров. Первый школьник добежал за 25 секунд. Второй за 50 секунд. Кто добежал быстрее?
Быстрее добежал тот, кто за 1 секунду пробежал бóльшее расстояние. Говорят, что у него скорость движения больше. В данном случае скорость школьников это расстояние, которое они пробегают за 1 секунду.
Чтобы найти скорость, нужно расстояние разделить на время движения. Давайте найдём скорость первого школьника. Для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:
100 м : 25 с = 4
S = 100 м
V₁ = 10 м/с
V₂ = 15 м/с
t - ?
Решение:
Примем воду за неподвижную систему отсчета, а теплоход за подвижную систему отсчета. Тогда по закону сложения скоростей
Vабс(вектор) = Vпер(вектор) + Vотн(вектор), откуда
Vотн(вектор) = Vабс(вектор) - Vпер(вектор)
Выполнив векторное вычитание, получим, что на пути катера к корме теплохода Vотн = V₂ - V₁, а на обратном пути Vотн = V₁ + V₂
Время до корма теплохода t₁ = S / (V₂ - V₁), а время t₂ = S / (V₁ + V₂).
t = t₁ + t₂
t = S / (V₂ - V₁) + S / (V₁ + V₂)
t = 100 / 5 + 100 / 25 = 20 + 4 = 24 с
ответ: 24 с