В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Joshler0canon
Joshler0canon
11.01.2021 06:18 •  Физика

Оксиген масою 5 кг у посудині об’ємом 5000 л чинить тиск 1,5•10^5ПА. Визначте середню кінетичну енергію поступального руху молекул окисгену. С дано

Показать ответ
Ответ:
Elirgon88
Elirgon88
26.05.2022 06:08

Объяснение:

ОПТИКА И СПЕКТРОСКОПИЯ, 2010, том 109, № 2, с. 179-181

= БИОМЕДИЦИНСКАЯ ОПТИКА И СПЕКТРОСКОПИЯ =

УДК 535.8

БИОМЕДИЦИНСКАЯ ОПТИКА И СПЕКТРОСКОПИЯ © 2010 г. А. Н. Башкатов, В. В. Любимов, В. В. Тучин

В этом выпуске журнала "Оптика и спектроскопия" помещены статьи, отражающие современное состояние оптических технологий, применяемых и перспективных для применения в биомедицинских исследованиях. Бурное развитие оптической биомедицинской диагностики и терапии в настоящее время обусловлено многими факторами. Во-первых, это новые результаты фундаментальных исследований по взаимодействию оптического излучения с биологическими тканями и клетками, включая поляризованное излучение, флуоресценцию в многократно рассеивающей среде и спекл-интерференционные явления. Во-вторых, это существенный прогресс в области разработки средств доставки, детектирования и визуализации оптического излучения. В-третьих, появление новых компьютерных и на-нотехнологий. Все это дает возможность получения новой, ранее недоступной информации о живых объектах средствами спектроскопии и обеспечить более эффективное фотовоздействие на отдельные биологические структуры.

Оптика наночастиц и ее приложения в биомедицине представляют собой новую область нано-биотехнологии. Одной из перспективных областей применения люминесцентных полупроводниковых наночастиц, обладающих широким спектром поглощения и ярко выраженным узким пиком люминесценции в видимой части спектра, является медицинская диагностика. Поскольку длина волны флуоресценции нанокристаллов одного и того же состава строго зависит от их размеров, то изменяя размеры и состав полупроводниковых нанокристаллов, можно менять длину волны их флуоресценции от синей до инфракрасной области оптического спектра. При этом для возбуждения люминесценции нанокристал-лов всех цветов достаточно одного источника излучения. Такие уникальные свойства делают на-нокристаллы идеальными флуорофорами для сверхчувствительного многоцветного детектирования биологических объектов, а также медицинской диагностики, требующей регистрации многих параметров одновременно. В частности, синтезу наночастиц сульфида кадмия посвящена одна из статей данного выпуска.

Возможность генерации узкополосного высококогерентного излучения, а также широкополосного излучения с малой длиной когерентности лежит в основе методов корреляционной и допплеровской спектроскопии, лазерной интерферометрии, оптической когерентной томографии (ОКТ), а также многочисленных методов лазерной диагностики и терапии различных заболеваний. Эти методы эффективно используются для изучения динамических и структурных особенностей нормальных и патологически измененных биологических объектов. Детектирование и корреляционная обработка спекл-структур также позволяют получать диагностическую информацию о пространственно-временной организации биологических объектов. Примером наиболее важных медицинских задач, для решения которых перспективны когерентно-оптические методы, является измерение скорости диффузии воды и лекарственных препаратов в тканях человеческого организма. Исследования последних лет показали перспективность использования ОКТ для решения этой проблемы. Одна из работ выпуска посвящена измерению скорости диффузии воды в дентине зуба человека, еще в одной работе проанализированы пространственные и временные масштабы когерентности био-спеклов, формирующихся в биотканях.

свойства и эффекты флуоресценции.

0,0(0 оценок)
Ответ:
Русланн2521
Русланн2521
31.05.2023 07:30

Путь, пройденный по проселочной дороге равен 29 км.

Объяснение:

Дано:

S = 87 км

V₁ = Vcp/2

V₂ = 2·Vcp

Sпр - ?

Обозначим через переменную   X длину пути (Sпр в км) по проселочной дороге. Тогда длина пути по трассе:  Sтр = S - X

Время движения по проселочной дороге:

t₁ = X / V₁  = 2·X / Vcp                     (1)

Время движения по трассе:

t₂ = Sтр / V₂  = (S - X) / (2·Vcp)        (2)

Общее время движения:

t = t₁ + t₂ = 2·X / Vcp + (S - X) / (2·Vcp)

или

t =  4·X / (2·Vcp) + (S - X) / (2·Vcp)

Упростим:

t =  (4·X + S - X) / (2·Vcp)

t =  (3·X + S ) / (2·Vcp)

Средняя скорость:

Vcp = S / t

Vcp =  S·(2·Vcp) / (3·X + S )

Сократим на Vcp:

1 =  2·S / (3·X + S )

(3·X + S ) = 2·S

3·X = 2·S - S

3·X = S

X = S / 3

X = 87 / 3 = 29 км

Путь, пройденный по проселочной дороге Sпр = 29 км.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота