N ≈ 1.57·10²³
Объяснение:
T = 315 K
<v> = 320 м/c
m = 20 г = 0,02 кг
Na = 6.022·10²³ 1/моль - постоянная Авогадро
R = 8.31 Дж/(моль·К) - универсальная газовая постоянная
N - ?
По закону Клапейрона-Менделеева
pV = νRT
(р - давление, V - объём, ν - количество вещества)
ν = N/Na
pV = NRT/Na (1)
Будем считать газ идеальным и одноатомным, тогда давление газа р можно вычислить как
р = nm₀<v>²/3 (n - концентрация, m₀ - масса молекулы)
n = N/V; m₀ = m/N
Тогда
nm₀ = m/V
р = m<v>²/3V
и
pV = m<v>²/3 (2)
Приравняем правые части уравнений (1) и (2)
NRT/Na = m<v>²/3
и выразим отсюда N
N = m<v>²Na/3RT
N = 0.02 · 320² · 6.022·10²³ : (3 · 8.31 · 315)
В сопротивлении материалов принято рассчитывать деформации в относительных единицах:
Между продольной и поперечной деформациями существует зависимость
где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.
Закон Гука
В пределах упругих деформаций деформации прямо пропорциональны нагрузке:
где F — действующая нагрузка; к — коэффициент. В современной форме:
Получим зависимость
где Е — модуль упругости, характеризует жесткость материала.
В пределах упругости нормальные напряжения пропорциональны относительному удлинению.
Значение Е для сталей в пределах (2 – 2,1) • 105МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:
Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы.
Относительное удлинение
В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:
где
Δl — абсолютное удлинение, мм;
σ — нормальное напряжение, МПа;
l — начальная длина, мм;
Е — модуль упругости материала, МПа;
N — продольная сила, Н;
А — площадь поперечного сечения, мм2;
Произведение АЕ называют жесткостью сечения
N ≈ 1.57·10²³
Объяснение:
T = 315 K
<v> = 320 м/c
m = 20 г = 0,02 кг
Na = 6.022·10²³ 1/моль - постоянная Авогадро
R = 8.31 Дж/(моль·К) - универсальная газовая постоянная
N - ?
По закону Клапейрона-Менделеева
pV = νRT
(р - давление, V - объём, ν - количество вещества)
ν = N/Na
pV = NRT/Na (1)
Будем считать газ идеальным и одноатомным, тогда давление газа р можно вычислить как
р = nm₀<v>²/3 (n - концентрация, m₀ - масса молекулы)
n = N/V; m₀ = m/N
Тогда
nm₀ = m/V
р = m<v>²/3V
и
pV = m<v>²/3 (2)
Приравняем правые части уравнений (1) и (2)
NRT/Na = m<v>²/3
и выразим отсюда N
N = m<v>²Na/3RT
N = 0.02 · 320² · 6.022·10²³ : (3 · 8.31 · 315)
N ≈ 1.57·10²³
В сопротивлении материалов принято рассчитывать деформации в относительных единицах:
Между продольной и поперечной деформациями существует зависимость
где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.
Закон Гука
В пределах упругих деформаций деформации прямо пропорциональны нагрузке:
где F — действующая нагрузка; к — коэффициент. В современной форме:
Получим зависимость
где Е — модуль упругости, характеризует жесткость материала.
В пределах упругости нормальные напряжения пропорциональны относительному удлинению.
Значение Е для сталей в пределах (2 – 2,1) • 105МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:
Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы.
Относительное удлинение
В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:
где
Δl — абсолютное удлинение, мм;
σ — нормальное напряжение, МПа;
l — начальная длина, мм;
Е — модуль упругости материала, МПа;
N — продольная сила, Н;
А — площадь поперечного сечения, мм2;
Произведение АЕ называют жесткостью сечения