№1. Дано: ∟ АВО и ∟ОВС – смежные, ОВ – луч, ∟ОВС больше ∟АВО в 5 раз.
Найти: ∟АВО, ∟ОВС.
Рис. Смотри задача №1
№2. Дано: ∟1 и ∟2 смежные, ∟2 равен 40% от ∟1.
Найти: ∟1, ∟2.
Рис. Смотри задача №2
№3. Дано: ∟АОВ и ∟СОВ – смежные углы, ОМ – биссектриса ∟АОВ, ОР – биссектриса ∟СОВ.
Доказать: ∟МОР прямой.
Рис. Смотри задача №3
№4. Дано: а ∩ b = О, ∟1 + ∟2 + ∟3 = 245°.
Найти: ∟1, ∟2, ∟3, ∟4.
Рис. Смотри задача №4.
№5. Дано: ∟АВС, ВД – биссектриса ∟АВС, ВК – биссектриса ∟ДВС, ∟КВД = 32°
Найти: ∟АВС
Рис. Смотри задача №5
№6. Дано: ∟АОВ и ∟ДОС – вертикальные углы, ОМ – биссектриса ∟АОВ, ОР – биссектриса ∟СОД
Доказать: ∟МОР = 180°
Рис. Смотри задача №6
Не верное утверждение Г.
Объяснение:
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.
Задачу можно решить двумя обычным и через sin))) Какой вам лучше, выбирайте сами.
Обозначим параллелограмм, как АВСД
ВН - высота, опущенная на сторону АД
АН = 4 см, НД = 2 см.
АД = АН + НД = 4 + 2 = 6 см.
параллелограмма = АД × ВН
Угол В = 135 - 90 = 45 градусов (т.к. ВН - высота, следовательно, она опущена под углом 90 градусов)
Рассмотрим треугольник АВН. Угол ВНА = 90 градусов, АВН = 45 градусов, следовательно угол ВАН = 180 - 90 - 45 = 45 градусов. Значит треугольник АВН - равнобедренный
Следовательно, ВН=АН=4 см.
S параллелограмма = 6 × 4 = 24
параллелограмма = АВ × АД × sin a
Sin а = 45 градусов = √2 делённое на 2
АВ² = √ВН² + АН² = √4² + 4² = √32
S параллелограмма = √32 × 6 × √2 делённое на 2 = 24