1. Даны точки М(3;-2;1) и N(5;2;-3). Найдите координаты середина отрезка МN и его длину.
2. Даны точки А(-2;1;3), В(3;-2;1) и С(-3;4;2). Найдите:
а) координаты векторов → и →
АВ АС
2) координаты вектора →
АВ
3) координаты вектора решить, завтра контрольная очень надо..
Высота равнобедренной трапеции, опущенная из вершины тупого угла на большее основание. делит его на два отрезка, из которых меньший равен полуразности, больший – полусумме оснований.
ВН=2, АН=4
Треугольник АСВ вписан в тот же сегмент, что и квадрат, его высота СН – сторона квадрата и равна 2 см.
Радиус описанной около треугольника окружности находят по формуле R=a•b•c:4S, т.е. он равен произведению сторон треугольника, деленному на его учетверенную площадь
По т.Пифагора АС=√(AH²+CH²)=√(16+4)=2√5
По т.Пифагора ВС=√(CH²+BH²)=√8=2√2
S (АВС)=СН•AB:2=2•6:2=6 (см²)
a•b•c=6•2√5•2√2=24√10
4S=24
R=24√10:24=√10 (см)
Или,
используя найденные выше значения АС и ВС:
По т.синусов
см