1. Контрольная работа по геометрии 7 класс. КА-5.
Вариант А1.
1. В треугольнике АВС ∠А = 70°, ∠С = 55°.
а) Докажите, что треугольник АВС — равнобедренный, и укажите его основание.
б) Отрезок ВМ — высота данного треугольника. Найдите углы, на которые она делит угол АВС.
2. Отрезки АВ и CD пересекаются в точке О, которая является серединой каждого из них
а) Докажите, что △АОС = △BOD.
б) Найдите ∠OAC, если ∠ODB = 20°, ∠AOC = 115°.
3. В равнобедренном треугольнике с периметром 64 см одна из сторон равна 16 см. Найдите длину боковой стороны треугольника.
Внутри треугольника АВС взята точка D такая, что угол ABD = угол ACD = 45°. Докажите, что отрезки AD и BC перпендикулярны и равны, если угол ВАС равен 45°
* * *
Продлим ВD до пересечения с АС в т.Н, а отрезок СD - до пересечения с АВ в т.К и проведем АМ через т.D.
∠АСD=45° по условию, Если ∠ВАС=45°, то ∠АКС=90° и ∆ АСК – равнобедренный прямоугольный. АК=СК.
В ∆ АВН два угла при АВ равны 45°⇒∠ВНА=90° и ∆ АВН - равнобедренный прямоугольный, Тогда точка D - пересечение высот СК и ВН треугольника АВС. Отрезок АМ, содержащий АD, проходит через точку пересечения высот, следовательно, является высотой и перпендикулярен ВС. Отсюда АD⊥ВС. Доказано.
Прямоугольные ⊿ АКD и ⊿ CMD подобны по равному углу при вершине D ( вертикальные) ⇒ ∠КАD=∠MCD.
Рассмотрим ⊿ АКD и ⊿ ВКС. Из ⊿ АКС их катеты АК=СК. Острые ∠КАD и ∠КСВ равны (из доказанного выше). Следовательно, ⊿ АКD=⊿ ВКС по катету и острому углу. Отсюда следует равенство гипотенуз этих треугольников. АD=ВС, ч.т.д.