Треугольники даны с равными попарно сторонами и углу(не между сторонами)1)если угол вас прямой то треугольники равны(попробуй построить прямоугольный треугольник по катету и гипотенузе).252)по другому никакпопытайся построить церкулем и линейкой вот чтопрямая, отложи данный угол, отложи данную сторону, проведи окружность с длиной другой стороны и заметишь, что эта окружность пересечет противоположную сторону в двух точках(два треугольника)3)можно отдельно так же рассмотреть равнобедренный треугольник. в этом случае треугольники равны(угол при основании тупым не бывает)
Скалярным произведением векторов a(x1;y1;z1) и b(x2;y2;z2), заданных своими координатам, находится по формуле:
Скалярное произведение векторов
Зная модули векторов и угол между ними, скалярное произведение можно найти по формуле:
Условие перпендикулярности векторов a(x1;y1;z1) и b(x2;y2;z2) имеет вид:
x1x2 + y1y2 + z1z2 = 0
Решение онлайн
Видеоинструкция
ИНСТРУКЦИЯ. Заполните координаты векторов и нажмите кнопку Решение. При этом векторы могут быть заданы на плоскости (две координаты) и в пространстве (три координаты).
Задание. Найти скалярное произведение векторов
Заданы
две координаты вектора
три координаты вектора
a = (
0
;
0
;
) и b = (
0
;
0
;
)
Решение
ПРИМЕР. Найти скалярное произведение векторов a = (4; -3; 1) и b = (5; -2; -3).
Решение. По формуле находим a·b = 4·5 + (-3)·(-2) + 1·(-3) = 23. Поскольку 23≠0, то данные вектора не перпендикулярны.
Объяснение:
Скалярное произведение векторов
Скалярным произведением векторов a(x1;y1;z1) и b(x2;y2;z2), заданных своими координатам, находится по формуле:
Скалярное произведение векторов
Зная модули векторов и угол между ними, скалярное произведение можно найти по формуле:
Условие перпендикулярности векторов a(x1;y1;z1) и b(x2;y2;z2) имеет вид:
x1x2 + y1y2 + z1z2 = 0
Решение онлайн
Видеоинструкция
ИНСТРУКЦИЯ. Заполните координаты векторов и нажмите кнопку Решение. При этом векторы могут быть заданы на плоскости (две координаты) и в пространстве (три координаты).
Задание. Найти скалярное произведение векторов
Заданы
две координаты вектора
три координаты вектора
a = (
0
;
0
;
) и b = (
0
;
0
;
)
Решение
ПРИМЕР. Найти скалярное произведение векторов a = (4; -3; 1) и b = (5; -2; -3).
Решение. По формуле находим a·b = 4·5 + (-3)·(-2) + 1·(-3) = 23. Поскольку 23≠0, то данные вектора не перпендикулярны.