139. из двух одинаковых прямоугольников со сторонами 4 см и 6 см сложи один прямоугольник. рассмотри различные решения и сравни: 1) площади полученных прямоугольников; 2) их периметры. как начертить?
В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
96 АЕ = ЕК.
Докажите, что прямоугольник ABCD и треугольник AKD равновелики.
ответ : Равновеликими называются фигуры, имеющие равные площади.
Проведем КН⊥EF и рассмотрим треугольники АВЕ и КНЕ : ∠АВЕ = ∠КНЕ = 90°, АЕ = ЕК по условию, ∠АЕВ = ∠КЕН как вертикальные, ⇒ ΔАВЕ = ΔΔКНЕ по гипотенузе и острому углу.
Из равенства треугольников следует, что КН = АВ.
АВ = CD, значит КН = CD.
Рассмотрим треугольники KHF и DCF : ∠KHF = ∠DCF = 90°, KH = CD, ∠KFH = ∠DFC как вертикальные, значит ΔKHF = ΔDCF по катету и противолежащему острому углу.
Итак, Sabe = Skhe - зеленые треугольники, Skhf = Sdcf - желтые треугольники.
Площадь прямоугольника состоит из площади голубой трапеции, площади зеленого треугольника и площади желтого треугольника.
Из площадей таких же фигур состоит и площадь треугольника AKD, значитSabcd = Sakd.
Или можно записать все это в обозначениях : Sabcd = Saefd + Sabe + SdcfSakd = Saefd + Skeh + SkfhSabe = Skeh, Sdcf = Skfh, ⇒ Sabcd = Sakb.
Объяснение:
вот сам писал
В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
S AMD=[AC•CD:2]:2=4•3:4=3 см²
Объяснение: