В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
BLASTER11111
BLASTER11111
20.04.2023 01:39 •  Геометрия

2. В основании пирамиды лежит равнобедренная трапеция с углом 30°. Каждая боковые грани наклонены к основанию под углом 60°. Высота пирамиды равна 3√3. Найдите объем пирамиды.


2. В основании пирамиды лежит равнобедренная трапеция с углом 30°. Каждая боковые грани наклонены к

Показать ответ
Ответ:
Katyusha4368
Katyusha4368
30.06.2021 04:24

Дано:

ΔABC, ∠B = 90°.

Вписанная окружность с центром O и радиусом OD = OE = OF,

D∈BC, E∈AC, F∈AB.

OE = 12 (см), EC = 8 (см).

Найти:

S_{\triangle ABC} = ?

Заметим, что AE=AF=12  и  CE=CD=8 (так как отрезки касательных, проведенных к окружности из одной точки, равны).

Пусть OD=OE=OF=r.

Тогда \square BDOF - квадрат, так как \angle B = \angle D = \angle F = 90 \textdegree (и, значит, \angle O = 360 \textdegree - 3 \cdot 90 \textdegree = 90 \textdegree), а также OD=FB, OF=DB и OF=OD. - Все стороны и углы данного четырехугольника равны.

Значит, BD=BF=r.

Тогда катеты треугольника AB=12+r и BC=8+r, а гипотенуза равна AC=12+8=20.

По тереме Пифагора:

(AB)^2 + (BC)^2 = (AC)^2

(12+r)^2+(8+r)^2=20^2\\144+24r+r^2+64+16r+r^2 = 400\\208+40r + 2r^2=400\\2r^2+40r = 192\\r^2+20r-96=0\\\left[\begin{array}{ccc}r_1=4\\r_2=-24\end{array}\right

Второй корень нам не подходит (он отрицательный ... ).

Так что r=4.

AB=4+12=16\\BC=4+8=12

Можем найти площадь:

S_{ \triangle ABC} = \dfrac{(AB) \cdot (AC)}{2} = \dfrac{16 \cdot 12}{2} = 96

Задача решена!

96  см².


№740. Точка дотику кола, вписаного в прямокутний трикутник, ділить його гіпотенузу на відрізки завдо
0,0(0 оценок)
Ответ:

Обозначим данные прямые через l0 и l, данные точки на прямой l0 - через A0, B0, C0, данные точки на прямой l - через A, B, C. Пусть l1 - произвольная прямая, не проходящая через точку A. Возьмем произвольную точку O0, не лежащую на прямых l0 и l1. Обозначим через P0 центральное проектирование прямой l0 на прямую l1 с центром в точке O0, а через A1, B1, C1 - проекции точек A0, B0, C0. Пусть l2 - произвольная прямая, проходящая через точку A, не совпадающая с прямой l и не проходящая через A1. Возьмем некоторую точку O1 на прямой AA1 и рассмотрим центральное проектирование P1 прямой l1 на l2 с центром в O1. Обозначим через A2, B2, C2 проекции точек A1, B1, C1. Ясно, что A2 совпадает с A. Наконец, пусть P2 - проектирование прямой l2 на прямую l, которое в том случае, когда прямые BB2 и CC2 не параллельны, является центральным проектированием с центром в точке пересечения этих прямых, а в том случае, когда прямые BB2 и CC2 параллельны, является параллельным проектированием вдоль одной из этих прямых. Композиция P2°P1°P0 является требуемым проективным преобразованием.

Объяснение:

пример

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота