(24) Может ли треугольник иметь такие стороны: а) 4 дм, 4 дм, 4 дм; б) 12 м, 3 м, 9 м; в) 5 см, 8 см, 12 см; г) 6 см, д) 3 см, 5 дм, 4 см? Объясни почему.
a) Докажите, что KM перпендикулярно AC. Проведём секущую плоскость через точку К перпендикулярно грани АА1С1С. Так как точка К - это середина А1В1, то эта плоскость пересечёт сторону АС в половине её половины, то есть отсечёт (1/4) АС и это как раз точка М, которая делит ребро AC в отношении AM:MC = 1:3. А любая прямая, в том числе и КМ, лежащая в плоскости, перпендикулярной АС, будет перпендикулярна АС. Условие доказано.
б) Найдите угол между прямой KM и плоскостью ABB1, если AB=6, AC=8 и AA1 =3. Чтобы определить этот угол, надо найти плоский угол, а для этого надо спроецировать отрезок КМ на плоскость АВВ1. Пусть проекция точки М на эту плоскость - точка М1. ММ1 ⊥ АВ. Проекция точки К на АВ - точка К1. Определяем параметры отрезков на основании АВС. Высота из точки В на АС - это ВД. ВД = √(АВ²-(АС/2)²) = √(6²-(8/2)²) = √(36-16) = √20 = 2√5. Из подобия треугольников К1М = (1/2)ВД = √5. Отрезок: КМ = √((К1М)²+(КК1)²) = √(5+9) = √14. К1М1 = К1М*cos(B/2) = √5*(2√5/6) = 5/3. КМ1 = √((К1М1)²+(КК1)²) = √((25/9)+9) = √106/3. Отсюда определяем косинус искомого угла: cos(M1KM) = KM1/KM = (√106/3)/√14 ≈ 0,917208. Отсюда угол между отрезком КМ и плоскостью АВВ1 равен 0,409782 радиан или 23,47879°.
ответ: угол между прямой KM и плоскостью ABB1 равен 23,47879°.
АВСД - трапеция, АС=3 , ВД=4 , средняя линия =2,5 Проведём из т.С прямую СМ║ВД (точка М - точка пересечения СМ и АД) ВСМД - параллелограмм ⇒ ВС=ДМ=3 , ВД=СМ=4 . Так как средн. линия = 2,5 , то 2,5=(АД+ВС):2 ⇒ АД+ВС=2·2,5=5 АМ=АД+ДМ=АД+ВС=5 ΔАСМ имеет площадь ,равную площади трапеции, так как S(трапеции)=(АВ+ВС)/2 ·h = 1/2·AM·h (h - высота трапеции СН) S(ΔАСМ)=1/2·АМ·h (h - высота ΔАСМ = высоте трапеции СН) Найдём площадь ΔАСМ, заметив, что он прямоугольный, так как АМ=5, а √(АС²+СМ²)=√(3²+4²)=√25=5, то есть выполняются условия теоремы Пифагора: АМ²=АС²+СМ² . S(ΔАСМ)=1/2·АС·СМ=1/2·3·4=6 ⇒ S(АВСД)=6
P.S. Если бы ΔАСМ не оказался прямоугольным, то его площадь можно было бы найти по формуле Герона, т.к. все его стороны оказались известными.
Проведём секущую плоскость через точку К перпендикулярно грани АА1С1С.
Так как точка К - это середина А1В1, то эта плоскость пересечёт сторону АС в половине её половины, то есть отсечёт (1/4) АС и это как раз точка М, которая делит ребро AC в отношении AM:MC = 1:3.
А любая прямая, в том числе и КМ, лежащая в плоскости, перпендикулярной АС, будет перпендикулярна АС.
Условие доказано.
б) Найдите угол между прямой KM и плоскостью ABB1, если AB=6, AC=8 и AA1 =3.
Чтобы определить этот угол, надо найти плоский угол, а для этого надо спроецировать отрезок КМ на плоскость АВВ1.
Пусть проекция точки М на эту плоскость - точка М1. ММ1 ⊥ АВ.
Проекция точки К на АВ - точка К1.
Определяем параметры отрезков на основании АВС.
Высота из точки В на АС - это ВД.
ВД = √(АВ²-(АС/2)²) = √(6²-(8/2)²) = √(36-16) = √20 = 2√5.
Из подобия треугольников К1М = (1/2)ВД = √5.
Отрезок: КМ = √((К1М)²+(КК1)²) = √(5+9) = √14.
К1М1 = К1М*cos(B/2) = √5*(2√5/6) = 5/3.
КМ1 = √((К1М1)²+(КК1)²) = √((25/9)+9) = √106/3.
Отсюда определяем косинус искомого угла:
cos(M1KM) = KM1/KM = (√106/3)/√14 ≈ 0,917208.
Отсюда угол между отрезком КМ и плоскостью АВВ1 равен 0,409782 радиан или 23,47879°.
ответ: угол между прямой KM и плоскостью ABB1 равен 23,47879°.
Проведём из т.С прямую СМ║ВД (точка М - точка пересечения СМ и АД)
ВСМД - параллелограмм ⇒ ВС=ДМ=3 , ВД=СМ=4 .
Так как средн. линия = 2,5 , то 2,5=(АД+ВС):2 ⇒ АД+ВС=2·2,5=5
АМ=АД+ДМ=АД+ВС=5
ΔАСМ имеет площадь ,равную площади трапеции, так как
S(трапеции)=(АВ+ВС)/2 ·h = 1/2·AM·h (h - высота трапеции СН)
S(ΔАСМ)=1/2·АМ·h (h - высота ΔАСМ = высоте трапеции СН)
Найдём площадь ΔАСМ, заметив, что он прямоугольный, так как
АМ=5, а √(АС²+СМ²)=√(3²+4²)=√25=5, то есть выполняются условия теоремы Пифагора: АМ²=АС²+СМ² .
S(ΔАСМ)=1/2·АС·СМ=1/2·3·4=6 ⇒ S(АВСД)=6
P.S. Если бы ΔАСМ не оказался прямоугольным, то его площадь можно было бы найти по формуле Герона, т.к. все его стороны оказались известными.