3. В треугольниках ABC и A,B,C, AB = A, B, угол A = угол A, угол B = угол B. Точки D и D, лежат соответственно на сторонах AC и A, C, причем CD = CD. Докажите, что угол BDC= угол В,D,C,. Сравните BD и
Осуждённый проглотил выбранную им бумажку. Чтобы установить, какой жребий ему выпал, судьи заглянули в оставшуюся бумажку. На ней было написано: «смерть». Это доказывало, что ему повезло, он вытащил бумажку, на которой было написано: «жизнь».
Как в случае, о котором рассказывает загадка, при доказательстве возможны только два случая: можно… или нельзя… Если удастся убедится, что первое невозможно (на бумажке, которая досталась судьям, написано: «смерть»), то сразу можно сделать вывод, что справедлива вторая возможность (на второй бумажке написано: «жизнь»).
M=4 дм - апофема усечённой пирамиды. Пусть сторона большего основания равна а, тогда сторона меньшего а/3. Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9. Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3. Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒ 5а²+48а-837=0 а1=-93/5 - отрицательное значение не подходит. а2=9. Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм. h²=m²-b²=4²-3²=7 h=√7 дм. ответ: высота усечённой пирамиды равна √7 дм.
Thank
Объяснение:
Осуждённый проглотил выбранную им бумажку. Чтобы установить, какой жребий ему выпал, судьи заглянули в оставшуюся бумажку. На ней было написано: «смерть». Это доказывало, что ему повезло, он вытащил бумажку, на которой было написано: «жизнь».
Как в случае, о котором рассказывает загадка, при доказательстве возможны только два случая: можно… или нельзя… Если удастся убедится, что первое невозможно (на бумажке, которая досталась судьям, написано: «смерть»), то сразу можно сделать вывод, что справедлива вторая возможность (на второй бумажке написано: «жизнь»).
Пусть сторона большего основания равна а, тогда сторона меньшего а/3.
Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9.
Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3.
Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒
5а²+48а-837=0
а1=-93/5 - отрицательное значение не подходит.
а2=9.
Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм.
h²=m²-b²=4²-3²=7
h=√7 дм.
ответ: высота усечённой пирамиды равна √7 дм.