36 На рисунке 106 прямые а и b пересечены прямой с. Докажите, что a || b, если: а) 21 = 37°, 27 = 143°; б) 21 26; в) 21 = 45°, а угол 7 в три раза больше b угла 3
В правильной пирамиде ЕАВС боковые грани - прямоугольные равнобедренные треугольники с катетами 7√2 см, значит гипотенузы в них (стороны основания пирамиды) равны 7√2·√2=14 см. В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС. В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см. В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см. Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см. В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см. Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу: СМ·ЕО/2=ЕС·МК/2, МК=СМ·ЕО/ЕС, МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см. МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны. ответ: 7 см.
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС.
В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см.
В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см.
Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см.
В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см.
Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу:
СМ·ЕО/2=ЕС·МК/2,
МК=СМ·ЕО/ЕС,
МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см.
МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны.
ответ: 7 см.
36:3=12.
Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°.
Вычислим диаметр окружности:
d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3.
Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а.
По теореме Пифагора: a²+a²=d², 2a²=(8√3)².
2a²=64·3,
a²=32·3=16·2·3,
a=√16·6=4√6.
a=4√6.