370. Периметр прямокутника дорівнює 28 см, а площа 48 см. Точка простору віддалена від площини прямокутника на 12 см. Знайдіть відстані від даної точки до вершин прямокутника, якщо ці відстані рівні.
Площадь трапеции равна произведению полусуммы оснований и высоты.
Основания равны а = 5см, в = 15 см, боковая сторона с = 13 см
Найдём высоту.
Разность оснований в - а = 10см.
Поскольку трапеция равнобедренная, то опустив высоты из вершин меньшего основания на большее основание, получим с каждой стороны по половинке в - а,
т.е. 10/2 = 5см.
Треугольник, образованный высотой, боковой стороной и отрезком большего основания, отсечённым от него высотой, является прямоугольным. По теореме Пифагора: 13^2 = 5^2 + H^2
Откуда H^2 = 13^2 - 5^2 = 169 - 25 = 144
Н = 12
Sтрап = 0,5 (а + в) * Н = 0,5 (5 + 15) * 12 = 120 (кв.см)
Чертим угол с вершиной О. От О, как из центра, отмечаем циркулем на сторонах угла равные отрезки ОА и ОВ. Из А и В как из центров с циркуля строим две полуокружности (можно тем же радиусом, можно поменьше). Точки пересечения окружностей и О соединяем лучом ОС, который делит данный угол пополам и является для него биссектрисой. Для угла АОЕ повторяем эту процедуру, применив в качестве центров полуокружностей точки А и С. Точки пересечения и О соединяем прямой ОМ, которая, являясь биссектрисой половины угла АОВ, отделила от него угол АОМ, равный половине угла АОС и равный четверти угла АОВ
Площадь трапеции равна произведению полусуммы оснований и высоты.
Основания равны а = 5см, в = 15 см, боковая сторона с = 13 см
Найдём высоту.
Разность оснований в - а = 10см.
Поскольку трапеция равнобедренная, то опустив высоты из вершин меньшего основания на большее основание, получим с каждой стороны по половинке в - а,
т.е. 10/2 = 5см.
Треугольник, образованный высотой, боковой стороной и отрезком большего основания, отсечённым от него высотой, является прямоугольным. По теореме Пифагора: 13^2 = 5^2 + H^2
Откуда H^2 = 13^2 - 5^2 = 169 - 25 = 144
Н = 12
Sтрап = 0,5 (а + в) * Н = 0,5 (5 + 15) * 12 = 120 (кв.см)
От О, как из центра, отмечаем циркулем на сторонах угла равные отрезки ОА и ОВ. Из А и В как из центров с циркуля строим две полуокружности (можно тем же радиусом, можно поменьше). Точки пересечения окружностей и О соединяем лучом ОС, который делит данный угол пополам и является для него биссектрисой. Для угла АОЕ повторяем эту процедуру, применив в качестве центров полуокружностей точки А и С. Точки пересечения и О соединяем прямой ОМ, которая, являясь биссектрисой половины угла АОВ, отделила от него угол АОМ, равный половине угла АОС и равный четверти угла АОВ