Всё проще простого) Смотри, что нам известно: диагональ и сторона. Причём диагональ, сторона и неизвестная сторона образуют прямоугольный треугольник. Ничего не напоминает? Правильно: теорема Пифагора! :) Квадрат гипотенузы (то бишь диагонали) равен сумме квадратов катетов (то есть квадраты известной и неизвестной сторон): 100 = 64 + x^2; x^2 = 36; x = 6. Итак, неизвестная сторона найдена. Осталось только найти площади и периметр) Площадь прямоугольника равна произведению его смежных (соседних) сторон: 8 * 6 = 48. Теперь периметр - это сумма всех сторон: 6 + 6 + 8 + 8 = 28. Вот и всё)
Боковыми гранями правильной усеченной пирамиды являются равные равнобедренные трапеции. Для нахождения площади боковой поверхности нужно найти высоту этих трапеций.
Проведем из вершин В и В1 оснований пирамиды высоты (медианы) ВН и В1М. В треугольнике АВС т.О - центр вписанной окружности и делит ВН в отношении 2:1, считая от вершины (по свойству медиан). ОН=ВН:3=АВ•sin60°:6. ОH=6•√3:2):3.=√3
Аналогично находим длину МО1 в меньшем основании А1В1С1. Отрезок МО1=(√3)/3.
По т. о 3х- перпендикулярах МН⊥АС и является высотой трапеции АА1С1С.
Площадь боковой поверхности данной пирамиды Ѕ(ус.пир.)=3•Ѕ(АА1С1С)=3•МН•(А1С1+АС):2.
Ѕ(ус.пир.)=3•(4:√3)•8:2=16√3 см²
————
Для нахождения высоты полной пирамиды РАВС, из которой получена данная усеченная пирамида, рассмотрим ∆ РОН и ∆ МНК. Они прямоугольные, имеют общий острый угол при вершине Н, ⇒
Смотри, что нам известно: диагональ и сторона. Причём диагональ, сторона и неизвестная сторона образуют прямоугольный треугольник. Ничего не напоминает? Правильно: теорема Пифагора! :)
Квадрат гипотенузы (то бишь диагонали) равен сумме квадратов катетов (то есть квадраты известной и неизвестной сторон): 100 = 64 + x^2; x^2 = 36; x = 6.
Итак, неизвестная сторона найдена. Осталось только найти площади и периметр)
Площадь прямоугольника равна произведению его смежных (соседних) сторон: 8 * 6 = 48.
Теперь периметр - это сумма всех сторон: 6 + 6 + 8 + 8 = 28.
Вот и всё)
Боковыми гранями правильной усеченной пирамиды являются равные равнобедренные трапеции. Для нахождения площади боковой поверхности нужно найти высоту этих трапеций.
Проведем из вершин В и В1 оснований пирамиды высоты (медианы) ВН и В1М. В треугольнике АВС т.О - центр вписанной окружности и делит ВН в отношении 2:1, считая от вершины (по свойству медиан). ОН=ВН:3=АВ•sin60°:6. ОH=6•√3:2):3.=√3
Аналогично находим длину МО1 в меньшем основании А1В1С1. Отрезок МО1=(√3)/3.
Из т.М опустим перпендикуляр МК на ОН.
НК= НО-МО1=√3-(√3)/3= (2√3)/3
МК - катет прямоугольного треугольника МКН с гипотенузой МН=НК:cos ∠МНК=[(2√3):3]:1/2=4/√3 .
По т. о 3х- перпендикулярах МН⊥АС и является высотой трапеции АА1С1С.
Площадь боковой поверхности данной пирамиды Ѕ(ус.пир.)=3•Ѕ(АА1С1С)=3•МН•(А1С1+АС):2.
Ѕ(ус.пир.)=3•(4:√3)•8:2=16√3 см²
————
Для нахождения высоты полной пирамиды РАВС, из которой получена данная усеченная пирамида, рассмотрим ∆ РОН и ∆ МНК. Они прямоугольные, имеют общий острый угол при вершине Н, ⇒
∆ РОН ~∆ МНК. k=НО:НК=√3:(2√3)/3=3/2
РО:МК=3/2.
МК=МН•sin60°=(4/√3 )•√3/2=2 см ⇒
PO=3 см