1) АВ = 16 + 4 = 20 2) Соединим точки А и В с центром окружности. (с точкой О) 3) Получили равнобедренный треугольник АОВ АО = ОВ ( т.к. это радиусы) 4) Из вершины О треугольника проведём высоту к основанию АВ. 5) Высота в равнобедренном треугольнике является и медианой, и биссектрисой. Обозначим точку пересечения высоты с основанием точкой К. АК = КВ = (4 + 16) : 2 = 10 6) Рассмотрим прямоугольный треугольник РОК: РО = 15 (по условию) РК = 10 - 4 = 6 Найдём по теореме Пифагора ОК. ОК = Y(15^2 - 6^2) = 13,75
Δ АВС - прямоугольный, Катет АС, лежащий против угла СВА = 1/2 гипотенузы АВ, т.к. по условию уголСВа =30°,т.е. АС=АВ:2=8см:2=4см. Сразу отметим, что второй угол(САВ) равен 60°(т.к.180°-90°-30°=60°) При проведении из вершины прямого угла ВСА высоты к гипотенузе АВ, получим ΔСДА, в котором угол СДА прямой по определению (и АС уже его гипотенуза), угол САД равен 60°( это наш САВ). Тогда угол АСД = 180°-90°-60° =30° и отрезок АД, как катет, лежащий против угла 30°, равен половине его гипотенузы АС, АД = 1/2АС = 4см:2 = 2см
2) Соединим точки А и В с центром окружности. (с точкой О)
3) Получили равнобедренный треугольник АОВ
АО = ОВ ( т.к. это радиусы)
4) Из вершины О треугольника проведём высоту к основанию АВ.
5) Высота в равнобедренном треугольнике является и медианой, и биссектрисой. Обозначим точку пересечения высоты с основанием точкой К.
АК = КВ = (4 + 16) : 2 = 10
6) Рассмотрим прямоугольный треугольник РОК:
РО = 15 (по условию) РК = 10 - 4 = 6
Найдём по теореме Пифагора ОК. ОК = Y(15^2 - 6^2) = 13,75
7) Рассмотрим прямоугольный треугольник ОКВ:
По теореме Пифагора найдём радиус ОВ:
ОВ = Y(13,75^2 + 10^2 = 17
ответ: 17 - радиус окружности
При проведении из вершины прямого угла ВСА высоты к гипотенузе АВ, получим ΔСДА, в котором угол СДА прямой по определению (и АС уже его гипотенуза), угол САД равен 60°( это наш САВ). Тогда угол АСД = 180°-90°-60° =30° и отрезок АД, как катет, лежащий против угла 30°, равен половине его гипотенузы АС, АД = 1/2АС = 4см:2 = 2см