4. Побудуйте трикутник симетричний різносторонньому трикутнику АВС відносно точки О, яка є серединою сторони ВС.
5. Виконайте поворот рівнобедреного трикутника ВСК з основою ВС на кут 90° за годинниковою стрілкою навколо точки К.
6. Точки B(-3;y) і B(x;4) симетричні відносно точки 0(1;5) . Знайдіть x і y .
7. При паралельному перенесенні точка А(1; -3) переходить в точку В(-1;4). В яку точку в результаті цього паралельного перенесення переходить
точка С(1;-5)?
СО - биссектриса и делит угол НСК пополам. .
Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы.
СО₁ делит угол ВСН пополам.
АСК - развернутый угол и равен 180º
Сумма половин углов АСН и ОСН равна половине развернутого угла.
Угол ОСО₁=180°:2=90°⇒
∆ ОСО₁ - прямоугольный с прямым углом С.
АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка:
СН=АН=6.
СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
СН²=ОН•HO₁
36=8 HO₁
HO₁=36/8=4,5 (ед. длины)
высота АН⊥ВС явл. медианой ⇒ ВН=СН=3
По теореме о трёх перпендикулярах ДН⊥ВС ⇒
расстояние от точки Д до ВС = ДН.
ΔАВН: АН=√(25-9)=4
ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД
АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора)
АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2
по теореме о трёх перпенд. НО⊥АС ⇒
искомое расстояние от т. Н до т. О (до АС)= НО.
ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2
Середина АВ - точка Е, АЕ=ВЕ=2.
Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17