6.2.12 Пластина ABDE состоит из прямоугольно- го треугольника ABE и полукруга ВDE Прини- мая поверхностные веса полукруга и треуголь- ника соответственно равными r1 и r2, опреде- лить отношение r1/r2, при котором центр тя- жести пластины расположен на оси Ву. (2)
Это настолько простая задача что я даже не знаю как точно написать доказательство ну пусть будет так: нарисуй любой треугольник и расставь буквы теперь смотри АС и DC принадлежит и тому и другому треугольникам значит нам необходимо доказать что AD меньше чем сумма AB и BD. Cторона AD соединяет вершину А и точку D напрямую а AB и BD соединяют точку А и D ломаной линией. Ну как известно кратчайшее расстояние между точками это прямая поэтому AD всегда будет меньше чем сумма AB и BD (кроме случая когда D совпадает с В тогда периметры этих треугольников просто будут совпадать так как это будет один и тот же треугольник) надеюсь довольно таки строго мне удалось доказать
Я тебе напишу общий план решения прости что не все но главное понять идею а там все просто будет. для начала конечно же рисунок получится примерно так как на картинке зеленым цветом я провел радиусы по условию они равны. Из рисунка видно что стороны треугольников равенство которых необходимо доказать являются основаниями равнобедренных треугольников у которых боковые стороны равны. также видно что и углы при вершине этих треугольников равны. следовательно все эти равнобедренные треугольники равны между собой из чего следует что все стороны рассматриваемых нами треугольников равны. А это в свою очередь означает что два интересующих нас треугольника (как выяснилось они правильные) равны. Что и требовалось доказать.
нарисуй любой треугольник и расставь буквы теперь смотри АС и DC принадлежит и тому и другому треугольникам значит нам необходимо доказать что AD меньше чем сумма AB и BD.
Cторона AD соединяет вершину А и точку D напрямую а AB и BD соединяют точку А и D ломаной линией. Ну как известно кратчайшее расстояние между точками это прямая поэтому AD всегда будет меньше чем сумма AB и BD (кроме случая когда D совпадает с В тогда периметры этих треугольников просто будут совпадать так как это будет один и тот же треугольник) надеюсь довольно таки строго мне удалось доказать