Из треугольников ABC, ACD соответственно по теор синусов
CAB=a
CAD=b
BC/sina=AC/sin(a+2b)
CD/sinb=AC/sin(2b+a)
но BC=CD , тогда
sina/sin(a+2b) = sinb/sin(b+2a)
sina*sin(b+2a) - sinb*sin(a+2b) = 0
cos(a-b-2a)-cos(b+3a) - cos(b-a-2b)+cos(a+3b)=0
cos(a+3b)=cos(b+3a)
a+3b=b+3a
2b=2a
a=b
CAB=CAD
2)
Пусть AECF точка O пересечения диагоналей и OE=OF рассмотрим симметрию относительно точки O, точка Е перейдет в точку F, точка B в точку D по определению симметрии так как CB=CD точка А перейдет в себя, тогда AB=AD тогда треугольники ABC=ACD откуда
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4
Два решения
1)
Из треугольников ABC, ACD соответственно по теор синусов
CAB=a
CAD=b
BC/sina=AC/sin(a+2b)
CD/sinb=AC/sin(2b+a)
но BC=CD , тогда
sina/sin(a+2b) = sinb/sin(b+2a)
sina*sin(b+2a) - sinb*sin(a+2b) = 0
cos(a-b-2a)-cos(b+3a) - cos(b-a-2b)+cos(a+3b)=0
cos(a+3b)=cos(b+3a)
a+3b=b+3a
2b=2a
a=b
CAB=CAD
2)
Пусть AECF точка O пересечения диагоналей и OE=OF рассмотрим симметрию относительно точки O, точка Е перейдет в точку F, точка B в точку D по определению симметрии так как CB=CD точка А перейдет в себя, тогда AB=AD тогда треугольники ABC=ACD откуда
180-2a-b=180-2b-a
3a=3b
a=b