1) Пусть одна часть равна х, тогда АВ=3х, ВС=4х.14х=42, По условию 3х+4х+3х+4х=42, 14х=42, х=42/14=3. АВ=3·3=9 см; ВС=4·3=12 см. ответ: АВ=9 см; ВС=12 см; СD=9 см; АD=12 см. 2) ΔDЕС - равнобедренный; DЕ=ЕС (по условию); Углы при основании равны ∠ЕDС=∠ЕСD. ∠ЕСD=∠СDМ ( ЕF║DМ; СD - секущая, углы разносторонние равны). ∠ЕDС=∠СDМ, значит DС делит угол на две равные части, DС - биссектриса угла ЕОМ. Ч.Т.Д. 3) смотри рисунок 3) DЕ=ЕС= FМ=6 см. ЕF= 6+13=19 см. Стороны параллелограмма равны 19 см и 6 см. Р(DЕFМ)=2(19+6)=50 см.
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
По условию 3х+4х+3х+4х=42,
14х=42,
х=42/14=3. АВ=3·3=9 см; ВС=4·3=12 см.
ответ: АВ=9 см; ВС=12 см; СD=9 см; АD=12 см.
2) ΔDЕС - равнобедренный; DЕ=ЕС (по условию); Углы при основании равны ∠ЕDС=∠ЕСD.
∠ЕСD=∠СDМ ( ЕF║DМ; СD - секущая, углы разносторонние равны).
∠ЕDС=∠СDМ, значит DС делит угол на две равные части, DС - биссектриса угла ЕОМ. Ч.Т.Д.
3) смотри рисунок 3) DЕ=ЕС= FМ=6 см.
ЕF= 6+13=19 см. Стороны параллелограмма равны 19 см и 6 см.
Р(DЕFМ)=2(19+6)=50 см.
Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)