Авиационная бомба среднего калибра дает при взрыве воронку диаметром 6 м и глубиной 2 м. Какое количество земли (по массе) выбрасывает эта бомба, если 1 куб м земли имеет массу 1650 кг?
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
1. 4) такого тр-ка не существует, потому-что 5+9<15, а с таким отношением тр-ник построить нельзя. 2. Пусть боковые стороны будут a=х и b=х-3. Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние: х²-10²=(х-3)²-5², х²-100=х²-6х+9-25, х=14, а=14 см, b=14-3=11 см, c=5+10=15 cм. Р=14+11+15=40 см. ответ: б) 40 см. 3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3. АВ=4√3/√3=4 см. Периметр ромба: Р=4АВ=16 см. ответ: а) 16 см.
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
нашли полную поверхность
2. Пусть боковые стороны будут a=х и b=х-3.
Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние:
х²-10²=(х-3)²-5²,
х²-100=х²-6х+9-25,
х=14,
а=14 см, b=14-3=11 см, c=5+10=15 cм.
Р=14+11+15=40 см.
ответ: б) 40 см.
3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3.
АВ=4√3/√3=4 см.
Периметр ромба: Р=4АВ=16 см.
ответ: а) 16 см.