Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
А)Доказательство: Рассмотрим треугольники AMP и CKP.По условию задачи угол AMP равен углу PKC;сторона AM равна стороне KC,а углы MAP и KCP равны как углы равнобедренного треугольника,лежащие при основании.Поэтому треугольники AMP и CKP равны по второму признаку равенства треугольников.В равных треугольниках против равных углов лежат равные стороны,поэтому стороны MP и KP этих треугольников равны,что и требовалось доказать. б)Так как AM=KC по условию,то прямая MK параллельна прямой AC.Так как треугольники AMP и CKP равны,то BP является медианой треугольника ABC.Медиана равнобедренного треугольника является также его биссектрисой и высотой. BP перпендикулярна к прямой AC ,а т.к. прямая AC параллельна прямой MK ,то высота BP перпендикулярна к прямой MK,что и требовалось доказать.
Рассмотрим треугольники AMP и CKP.По условию задачи угол AMP равен углу PKC;сторона AM равна стороне KC,а углы MAP и KCP равны как углы равнобедренного треугольника,лежащие при основании.Поэтому треугольники AMP и CKP равны по второму признаку равенства треугольников.В равных треугольниках против равных углов лежат равные стороны,поэтому стороны MP и KP этих треугольников равны,что и требовалось доказать.
б)Так как AM=KC по условию,то прямая MK параллельна прямой AC.Так как треугольники AMP и CKP равны,то BP является медианой треугольника ABC.Медиана равнобедренного треугольника является также его биссектрисой и высотой. BP перпендикулярна к прямой AC ,а т.к. прямая AC параллельна прямой MK ,то высота BP перпендикулярна к прямой MK,что и требовалось доказать.