Бічна сторона рівнобедреного трикутникп дорівнює 25 мм, а проведена до неї висота 7 см. Знайти довжину більшого з відрізків, на якіі висота ділить бічну сторону трикутника
1. В условии перепутаны обозначения. Исправим их так:
Дано: треугольник ABC и треугольник CBD, AB = CD, ∠AВC = ∠DСВ. Докажите, что треугольники ABC и CBD равны.
AB = CD, ∠AВC = ∠DСВ по условию, ВС - общая сторона для треугольников АВС и CDB, значит ΔАВС = ΔCDB по двум сторонам и углу между ними.
2. В условии опечатка, очевидно, что надо доказать равенство треугольников АВС и ADC.
∠ BAC = ∠DAC, ∠BCA = ∠DCA по условию, АС - общая сторона для треугольников АВС и ADC, значит эти треугольники равны по стороне и двум прилежащим к ней углам.
3. К сожалению, в условии задачи перепутаны все обозначения. Исправим их так:
Дано: треугольник ABC и треугольник CBD, AB = CD, угол ABС равен углу BСD. Докажите, что AС = ВD.
АВ = CD по условию, ∠ABС = ∠BСD поусловию, ВС - общая сторона для треугольников ABС и DСВ, значит эти треугольники равны по двум сторонам и углу между ними. Значит АВ = CD.
4. Отрезки АВ и CD равны, значит равны и их половины:
АМ = ВМ = СМ = DМ, ∠AMD = ∠СМВ как вертикальные, значит
ΔAMD = ΔСМВ по двум сторонам и углу между ними, ⇒ AD = BC.
5. СО = OD по условию, ∠ACO = ∠BDO = 90° по условию, ∠АОС = ∠BOD как вертикальные, ⇒ ΔАОС = ΔBOD по стороне и двум прилежащим к ней углам.
6. Углы при основании равнобедренного треугольника равны:
В треугольнике ABC внешние углы при вершинах A и B равны. Докажите , что 2AC больше AB. Если внешние углы при вершинах равны, то и внутренние углы, как смежные с внешними, равны. Следовательно, углы А и В равны и треугольник АВС равнобедренный с основанием АВ. Одно из основных свойств треугольника гласит : Любая сторона треугольника меньше суммы двух других сторон и больше их разности. Так как АС=ВС, 2 АС=АС+ВС. АС+ВС больше стороны АВ, иначе треугольник не мог бы получиться - стороны просто не сошлись бы и не образовали третий угол. Следовательно, 2 АС больше АВ, что и требовалось доказать
1. В условии перепутаны обозначения. Исправим их так:
Дано: треугольник ABC и треугольник CBD, AB = CD, ∠AВC = ∠DСВ. Докажите, что треугольники ABC и CBD равны.
AB = CD, ∠AВC = ∠DСВ по условию, ВС - общая сторона для треугольников АВС и CDB, значит ΔАВС = ΔCDB по двум сторонам и углу между ними.
2. В условии опечатка, очевидно, что надо доказать равенство треугольников АВС и ADC.
∠ BAC = ∠DAC, ∠BCA = ∠DCA по условию, АС - общая сторона для треугольников АВС и ADC, значит эти треугольники равны по стороне и двум прилежащим к ней углам.
3. К сожалению, в условии задачи перепутаны все обозначения. Исправим их так:
Дано: треугольник ABC и треугольник CBD, AB = CD, угол ABС равен углу BСD. Докажите, что AС = ВD.
АВ = CD по условию, ∠ABС = ∠BСD поусловию, ВС - общая сторона для треугольников ABС и DСВ, значит эти треугольники равны по двум сторонам и углу между ними. Значит АВ = CD.
4. Отрезки АВ и CD равны, значит равны и их половины:
АМ = ВМ = СМ = DМ, ∠AMD = ∠СМВ как вертикальные, значит
ΔAMD = ΔСМВ по двум сторонам и углу между ними, ⇒ AD = BC.
5. СО = OD по условию, ∠ACO = ∠BDO = 90° по условию, ∠АОС = ∠BOD как вертикальные, ⇒ ΔАОС = ΔBOD по стороне и двум прилежащим к ней углам.
6. Углы при основании равнобедренного треугольника равны:
∠К = ∠М = 47°.
Сумма углов треугольника 180°. Значит
∠L = 180° - (∠K + ∠M) = 180° - (47° + 47°) = 180° - 94° = 86°
Если внешние углы при вершинах равны, то и внутренние углы, как смежные с внешними, равны.
Следовательно, углы А и В равны и треугольник АВС равнобедренный с основанием АВ.
Одно из основных свойств треугольника гласит :
Любая сторона треугольника меньше суммы двух других сторон и больше их разности.
Так как АС=ВС, 2 АС=АС+ВС.
АС+ВС больше стороны АВ, иначе треугольник не мог бы получиться - стороны просто не сошлись бы и не образовали третий угол.
Следовательно, 2 АС больше АВ, что и требовалось доказать