АВСД - ромб. Через вершину А проведена прямая а параллельна диагонали ВД. Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются). Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а. Есть теорема: Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую. Что и требовалось для доказательства.
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.
Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются).
Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а.
Есть теорема:
Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую.
Что и требовалось для доказательства.