В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Ира0386
Ира0386
22.11.2022 16:22 •  Геометрия

Центр окружности, вписанной в прямоугольный треугольник, находится на расстояниях и от концов гипотенузы. найти все стороны и углы треугольника .

Показать ответ
Ответ:
gpatimat
gpatimat
10.09.2020 17:19
Центр вписанной окружности - точка пересечения биссектрис. На рисунке указаны биссектрисы, выходящие из острых углов прямоугольного треугольника. Пусть угол отмеченный зеленым α, а красным β; 2α+2β = 90°; Значит α+β=45°; Значит тупой угол треугольника, образованного биссектрисами равен 180°-45°=135°. Стороны, прилежащие к этому углу, по условию равны √54 и √10. По теореме косинусов имеем: гипотенуза = 
\sqrt{54+10+2* \sqrt{540}* \frac{ \sqrt{2} }{2}}= \sqrt{64 + \sqrt{1080}}

Далее слишком большие вычисления. Они аналогичны тем, что выше. Тоже через теорему косинусов, ну можно местами и синусов :)

Центр окружности, вписанной в прямоугольный треугольник, находится на расстояниях и от концов гипоте
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота