Часть I.
1. Площадь прямоугольника АВСD равна 15. Найдите сторону ВС прямоугольника, если известно, что АВ = 5.
1) 10 2) 2,5 3) 3 4) 5
2. По данным рисунка найти площадь параллелограмма.
4
3
6
1). 18 кв. ед. 2). 24 кв. ед. 3). 12 кв. ед. 4). 9 кв. ед.
3. В ромбе АВСD проведена диагональ АС. Найдите угол АВС, если известно, что угол АСD равен 35°.
1) 70° 2) 110° 3) 145° 4) 125°
4. РЕ и МF - высоты треугольника МNP. МF пересекает PE в точке О. Какие из высказываний верны: N
1) △ ENP ̴ △FNМ F
2) △ MFP ̴ △ PEM E
3) △ MNP ̴ △MOP
4) △ MEO ̴ △PFO M P
ответы: 1) 2,3 2) 1,4 3) 1,2 4) 3,4
5. По данным рисунка найдите градусную меру
дуги Х.
120˚ Х
30˚
1). 210˚ 2). 225˚ 3). 180˚ 4). 150˚
6. Укажите, какие из перечисленных ниже утверждений верны:
1) Если диагонали четырехугольника равны, то он прямоугольник.
2) Если противоположные стороны четырехугольника попарно равны, то он параллелограмм.
3) Если диагонали четырехугольника перпендикулярны, то он ромб.
4) Диагонали прямоугольника являются биссектрисами его углов.
7. Сторона ромба равна 5, а одна из его диагоналей равна 6. Площадь ромба равна:
1)30 2) 24 3) 15 4) 12
8. Площадь квадрата со стороной 5 равна
1) 50 2) 25 3) 100 4) 20
9. Если sin t =, то
1) cos t = ; tg t = 1 2) cos t = ; tg t = 3) cos t =; tg t = 4) cos t =1; tg t = 0
10. Квадрат вписан в окружность диаметра 8. Периметр квадрата равен:
1) 32 2) 16 3) 16 4) 32
Часть II
1. В трапеции ABCD (ВC || AD) ВС = 9 см, AD = 16 см, BD = 18 см. Точка О – точка пересечения AC и BD. Найдите ОВ.
2 Хорды AB и CD пересекаются в точке Е так, что АЕ =3, ВЕ = 36, СЕ: DE= 3:4. Найдите CD и наименьшее значение радиуса этой окружности.
Итоговый тест
Обозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm
ответ: 1) 70*, 110*, 70*, 110*.
2) 50*, 130*, 50*, 130*.
3) 30*,150*, 30*, 150*.
Объяснение:
Сумма углов в четырехугольнике (а параллелограмм - четырехугольник) равно 360*.
Кроме того противоположные углы равны, а сумма углов, прилежащих к одной из сторон равна 180*.
Пусть угол А - острый, а угол В - тупой.
Значит
1) ∠В-∠А=40*. То есть ∠В больше ∠А на 40*.
Пусть ∠А=х, тогда ∠В=х+40. В сумме они равны 180*.
х+х+40=180*;
2х=140*;
х=70* - ∠А;
х+40*=70*+40*=110* - ∠В.
Так как противоположные углы в параллелограмме равны, то:
∠С=∠А=70*;
∠D=∠B=110*
Проверим:
70*+110*+70*+110*=140*+220*=360*. Все верно.
2) ∠В-∠А=80*. То есть угол В на 80* больше угла А.
∠А=х, ∠В=х+80*.
х+х+80*=180*
2х=100*;
х=50* - ∠А;
х+80*=50*+80*=130* - ∠В.
∠А=∠С=50*;
∠В=∠D=130*.
Проверим:
50*+130*+50*+130*=100*+260*=360*. Все верно.
3) ∠В-∠А=120*. Значит ∠В больше ∠А на 120*.
∠А=х, ∠В=х+120*.
х+х+120*=180*.
2х=60*;
х=30* - ∠А;
х+120*=30*+120*=150* - ∠В.
∠А=∠С=30*;
∠В=∠D=150*.
Проверим:
30*+150*+30*+150*=60*+300*=360*. Все верно.