Через катет ВС прямокутного трикутника АВС (кут 90°) проведено площину b під кутом 30° до площини трикутника. Обчисліть відстань від вершини А до площини В, якщо АВ - 5 см, ВС - 3 см.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
ответ:
1. р = 18см.
2 ас = 30/(√3+1) м.
объяснение:
площадь треугольника равна (1/2)·a·b·sinα, где a и b - стороны треугольника, а α - угол между этими сторонами. в нашем случае
а = 3х, b = 8x, sinα = √3/2. тогда
(1/2)·24х²·(√3/2) = 6√3 => x = 1 см.
имеем две стороны треугольника: 3см и 8см.
по теореме косинусов находим третью сторону:
х = √(3²+8²- 2·3·8·cos60) = √49 = 7см.
периметр треугольника равен 3+8+7 = 18см.
2. по теореме синусов в треугольнике авс:
ас/sinβ = ab/sinc.
∠c = 180 - 60 - 45 = 75°. sin75° = sin(45+30). по формуле
sin(45+30) = sin45·cos30 + cos45·sin30 = (√6+√2)/4.
тогда ас = ав·sinβ/sinc = (30·√3/2)/((√6+√2)/4). или
ас = 60/((√6+√2) = 60/(√2(√3+1)) = 30/(√3+1) м.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.