Параллелограмм — четырехугольник, у которого противоположные стороны равны. Допустим, что наш параллелограмм это АВСД. У него АВ=СД, а ВС=АД. Периметр равен сумме всех сторон, значит АВ+СД+ВС+АД=256 2АВ+2ВС=256.
По условию задачи АВ/ВС=0,27/0,13, и исходя из этой пропорции АВ=0,27ВС/0,13. Подставим это значение АВ в предыдущее уравнение: 2АВ+2ВС=256. 2*0,27ВС/0,13+2ВС=256. 0,54ВС/0,13+2ВС=256 ВС*54/13+2*13ВС/13=256 54ВС/13+26ВС/13=256 80ВС/13=256 ВС*80/13=256 ВС=256 / 80/13 ВС=256 * 13/80 ВС=41,6 см Значит ВС=АД=41,6 см
Теперь найдем размеры других сторон параллелограмма: АВ=0,27ВС/0,13 = 0,27*41,6/0,13=86,4 см Значит АВ=СД=86,4 см
Медиана треугольника - отрезок, соединяющий вершину треугольника с серединой противоположной стороны. (рис, 59 а)
Биссектриса треугольника - отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны. (рис. 60 а)
Высота треугольника - перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. (рис. 61)
Любой треугольник имеет:
· три медианы (рис. 59 б)
· три биссектрисы (рис. 60 б)
· три высоты (рис. 62 а, б, в)
Свойства:
- в любом треугольнике медианы пересекаются в одной точке.
- в любом треугольнике биссектрисы пересекаются в одной точке.
- в любом треугольнике высоты или их продолжения пересекаются в одной точке.
Допустим, что наш параллелограмм это АВСД.
У него АВ=СД, а ВС=АД.
Периметр равен сумме всех сторон, значит
АВ+СД+ВС+АД=256
2АВ+2ВС=256.
По условию задачи АВ/ВС=0,27/0,13, и исходя из этой пропорции
АВ=0,27ВС/0,13.
Подставим это значение АВ в предыдущее уравнение:
2АВ+2ВС=256.
2*0,27ВС/0,13+2ВС=256.
0,54ВС/0,13+2ВС=256
ВС*54/13+2*13ВС/13=256
54ВС/13+26ВС/13=256
80ВС/13=256
ВС*80/13=256
ВС=256 / 80/13
ВС=256 * 13/80
ВС=41,6 см
Значит ВС=АД=41,6 см
Теперь найдем размеры других сторон параллелограмма:
АВ=0,27ВС/0,13 = 0,27*41,6/0,13=86,4 см
Значит АВ=СД=86,4 см
ответ: ВС=АД=41,6 см, АВ=СД=86,4 см