Тема: перпендикулярность прямых и плоскостей. вариант №1. 1.в прямоугольном параллелепипеде авсда1в1с1д1 известно, что д1с1 = 6, вв1 = 8 , в1с1 = 3. найдите длину диагонали с1а. 2.из точки а проведен перпендикуляр ав к плоскости α и две наклонные ас и ад, ∠асв = 45°,ас = 6√2см, вд=8см. найдите ад.
3.в прямоугольном параллелепипеде авсда1в1с1д1 известно, что ав=3см, вс=4см, вв1 = 5√3см. найдите угол между диагональю параллелепипеда и плоскостью основания. 4.в треугольнике авс угол с равен 90°, ав = 4, sin а = 0,75. найдите вс. 5.через вершину к треугольника мкр проведена прямая кn,
перпендикулярная к плоскости треугольника. известно, что kn = 15см, mk=kp = 10 см,mp= 12 см. найдите расстояние от точки n до прямой mp. 6. дан прямоугольный параллелепипед авсда1в1с1д1 . найдите двугранный угол 1, если = 6√2 см,1 = 4√3 см, − квадрат.
BC = AD = 15 см
AB = CD = 6 см
P = 15 + 15 + 6 + 6 = 30 + 12 = 42 см
∠A = ∠C = 30° (в параллелограмме противоположные углы равны)
Пусть ∠B = ∠D = x°. Получим уравнение
x + x + 30 + 30 = 360 (сумма углов четырехугольника равна 360°)
2x + 60 = 360
2x = 360 - 60
2x = 300
x = 300/2 = 150
∠B = ∠D = 150°
Площадь параллелограмма равна произведению его сторон на синус угла между ними
S = AB * BC * sinB
По формуле приведения выразим следующее для простоты решения:
sin(180 - ∠B) = sinB
sin(180 - 30) = sin30 = 1/2
ответ: P = 42 см, S = 45 см²