Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
Так как треугольник равнобедренный то углы при его основании равны,следовательно угол 1 равен углу К и они оба равны по 48 градусов
Угол 2 называют внешним,а по определению внешний угол и смежный с ним внутренний угол в сумме равны 180 градусов,поэтому угол 2 равен
180-48=132 градуса
Задание 4
По условию МО=ОК , а углы ВМО и АКО равны между собой.
Как вертикальные,равны между собой и углы МОВ и АОК
И теперь мы можем утверждать,что треугольники МОВ и АОК равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам второго треугольника,то Треугольники равны между собой
Задание 5
Речь идёт о равнобедреном треугольники,т к по условию ВМ=ВС,
МК-биссектриса треугольника ВМС и т к точка А лежит на биссектрисе,то и в треугольнике ВАС АК тоже биссектриса и делит угол ВАС пополам,поэтому угол ВАК равен
∠ALB = 120°.
Объяснение:
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
Задание 3
Так как треугольник равнобедренный то углы при его основании равны,следовательно угол 1 равен углу К и они оба равны по 48 градусов
Угол 2 называют внешним,а по определению внешний угол и смежный с ним внутренний угол в сумме равны 180 градусов,поэтому угол 2 равен
180-48=132 градуса
Задание 4
По условию МО=ОК , а углы ВМО и АКО равны между собой.
Как вертикальные,равны между собой и углы МОВ и АОК
И теперь мы можем утверждать,что треугольники МОВ и АОК равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам второго треугольника,то Треугольники равны между собой
Задание 5
Речь идёт о равнобедреном треугольники,т к по условию ВМ=ВС,
МК-биссектриса треугольника ВМС и т к точка А лежит на биссектрисе,то и в треугольнике ВАС АК тоже биссектриса и делит угол ВАС пополам,поэтому угол ВАК равен
88:2=44 градуса
Объяснение: