Что за теорема если два тела подобны, то их объёмы, а также объёмы любых их соответствующих частей, пропорциональны кубам любых соответствующих отрезков.
1. Пусть х - угол при основании, тогда х+96 - угол при вершине, лежащей против основания. Углы при основании равнобедренного треугольника равны. Сумма углов треугольника равна 180°.
х + х + х+96 = 180
3х = 180 - 96
3х = 84
х = 28
ответ: 28°
2. Пусть k - коэффициент пропорциональности, тогда:
6k + 2k + 7k = 180
15k = 180
k = 12
∠А = 6k = 6 * 12 = 72°
∠В = 2k = 2 * 12 = 24°
∠М = 7k = 7 * 12 = 84°
3. Треугольник DEF - равнобедренный (так как FE=DE), ∠DEF - это угол, лежащий против основания, тогда:
Сечение, проходящее через DP --это треугольник, в котором одна сторона уже задана, осталось найти третью вершину)) эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ))) можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани... DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE в плоскости АСЕ (это диагональное сечение параллелепипеда))) строим параллельную СЕ прямую... или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
1. Пусть х - угол при основании, тогда х+96 - угол при вершине, лежащей против основания. Углы при основании равнобедренного треугольника равны. Сумма углов треугольника равна 180°.
х + х + х+96 = 180
3х = 180 - 96
3х = 84
х = 28
ответ: 28°
2. Пусть k - коэффициент пропорциональности, тогда:
6k + 2k + 7k = 180
15k = 180
k = 12
∠А = 6k = 6 * 12 = 72°
∠В = 2k = 2 * 12 = 24°
∠М = 7k = 7 * 12 = 84°
3. Треугольник DEF - равнобедренный (так как FE=DE), ∠DEF - это угол, лежащий против основания, тогда:
∠EDF = (180 - ∠DEF)/2 = (180 - 27)/2 = 76,5°
эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ)))
можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани...
DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE
в плоскости АСЕ (это диагональное сечение параллелепипеда)))
строим параллельную СЕ прямую...
или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую