Острый угол 45°, значит угол между меньшей стороной и высотой равен также 45°, находим, что высота равна а.
б. найдем большую диагональ параллелограмма по теореме косинусов AC^2=2a^2+4a^2-2*a√2*2a*cos135°=6a^2+4a^2=10a^2 AC=a√10 по теореме Пифагора найдем AC1 AC1^2=AA1^2+A1C1^2=a^2+(a√10)^2=a^2+10a^2=11a^2 AC1=a√11 найдем <AC1A1 cos<AC1A1=A1C1/AC1=a√10/a√11=√110/11 значит <AC1A1=17,5°
в. площадь меньшей боковой поверхности АВВ1А1 равна АВ*АА1=а*а√2=а^2√2 площадь большей поверхности ADD1A1 равна AD*DD1=2a*a=2a^2 площадь боковой поверхности параллелепипеда равна 2(a^2√2+2a^2)=2a^2√2+4a^2
г. площадь полной поверхности равна сумме площадей оснований и боковых поверзхностей площадь основания (параллелограмма) равна произведению стороны на высоту: 2а*а=2a^2 полная площадь равна: 2a^2√2+4a^2+4a^2=8a^2+2a^2√2
DB перпендикулярно к плоскости, следовательно, перпендикулярно любой прямой, лежащей в этой плоскости. Вспомним, что угол между двумя плоскостями есть угол между двумя перпендикулярами, проведёнными в этих плоскостях в одну точку общей прямой, по которой эти плоскости пересекаются. AC - общая прямая, по которой пересекаются плоскости ABC и DAC. Строим перпендикуляры. Треугольник ABC: из точки B проведём высоту BH на сторону AC. Треугольник ABC - равнобедренный (AB=BC - по условию), следовательно, BH - медиана и биссектриса. Нас, конечно же, интересует медиана. Треугольник DAC: из точки D проведём высоту DH на сторону AC. Треугольник DAC - равнобедренный (DA=DC - как равные наклонные равных проекций), следовательно, DH - медиана и биссектриса. Угол DHB - искомый.
б. найдем большую диагональ параллелограмма по теореме косинусов
AC^2=2a^2+4a^2-2*a√2*2a*cos135°=6a^2+4a^2=10a^2
AC=a√10
по теореме Пифагора найдем AC1
AC1^2=AA1^2+A1C1^2=a^2+(a√10)^2=a^2+10a^2=11a^2
AC1=a√11
найдем <AC1A1
cos<AC1A1=A1C1/AC1=a√10/a√11=√110/11
значит <AC1A1=17,5°
в. площадь меньшей боковой поверхности АВВ1А1 равна АВ*АА1=а*а√2=а^2√2
площадь большей поверхности ADD1A1 равна AD*DD1=2a*a=2a^2
площадь боковой поверхности параллелепипеда равна 2(a^2√2+2a^2)=2a^2√2+4a^2
г. площадь полной поверхности равна сумме площадей оснований и боковых поверзхностей
площадь основания (параллелограмма) равна произведению стороны на высоту: 2а*а=2a^2
полная площадь равна: 2a^2√2+4a^2+4a^2=8a^2+2a^2√2