Решение: 1) Пусть в одной части х° , тогда величина первого угла равна х°, второго - (2х)°, третьего - (3х)°. Зная, что сумма углов треугольника равна 180°, составим уравнение: х + 2х + 3х = 180 6х = 180 х = 180 : 6 х = 30 ∠1 = 30°, ∠2 = 60°, ∠3 = 90°. 2) В прямоугольном треугольнике напротив угла в 30° по теореме лежит катет, равный половине гипотенузы. В нашем треугольнике меньшей стороной, длина которой равна 4 см, как раз и является катет, лежащий напротив угла в 30°. Делаем вывод о том, что большая сторона, которой является гипотенуза , будет равна 4 см·2 = 8 см. ответ: 8 см.
∠SAO = 60°
Объяснение:
Проведем SO⊥(ABC).
SO = 12 см - расстояние от S до плоскости квадрата.
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость.АО - проекция SA на (АВС), значит
∠SAO - угол между прямой SA и плоскостью квадрата - искомый.
SA = SB = SC = SD по условию.
Если равны наклонные, проведенные к плоскости из одной точки, то равны и их проекции:OA = OB = OC = OD.
Значит, О - центр квадрата (точка пересечения диагоналей).
AD = 4√6 см, тогда диагональ квадрата:
AC = AD√2 = 4√6 · √2 = 8√3 см
AO = 0,5 AC = 0,5 · 8√3 = 4√3 см
Из прямоугольного треугольника SOA:
∠SAO = 60°
1) Пусть в одной части х° , тогда величина первого угла равна х°, второго - (2х)°, третьего - (3х)°.
Зная, что сумма углов треугольника равна 180°, составим уравнение:
х + 2х + 3х = 180
6х = 180
х = 180 : 6
х = 30
∠1 = 30°, ∠2 = 60°, ∠3 = 90°.
2) В прямоугольном треугольнике напротив угла в 30° по теореме лежит катет, равный половине гипотенузы. В нашем треугольнике меньшей стороной, длина которой равна 4 см, как раз и является катет, лежащий напротив угла в 30°. Делаем вывод о том, что большая сторона, которой является гипотенуза , будет равна 4 см·2 = 8 см.
ответ: 8 см.