ДАН ОСТРОУГОЛЬНЫЙ ТРЕУГОЛЬНИК АВС, В КОТОРОМ ПРОВЕДЕНА БИССЕКТРИСА BД. В ТРЕУГОЛЬНИКЕ AДB ПРОВЕДЕНА ВЫСОТА ДЕ, А НА СТОРОНЕ ВС ВЫБРАНА ТАКАЯ ТОЧКА Ф, ЧТО УГОЛ ДФС =45 ГРАДУСОВ. ДОКАЖИТЕ, ЧТО ВФ+ДЕ=ВЕ.
Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
Теорема пифагора: квадрат гипотенузы равен квадрату катетов. 1)с^2= 8^2+1^2=64+1=65 с=корень из 65 2) 12^2=10^2+b^2 144=100+b^2 b^2= 44 b= 2 корень из 11 3)диагонали при пересечении делятся пополам. получается треугольник с катетами 6 см и 8 см, а сторона ромба это гипотенуза треугольника. с^2=36+64 с^2=100. с=10 см. сторона ромба =10 см 4) диагональ прямоугольника образует со сторонами прямоугольный треугольник. с^2=36+49. с^2=85. с =корень из 85 5) в равнобедренном треугонике боковые стороны равны. s= 11×11×10=1210